The molecular-scale growth kinetics of ice from water in the presence of air molecules are still poorly understood, despite their importance for understanding ice particle formation in nature. In this study, a molecular dynamics simulation is conducted to elucidate the molecular-scale growth kinetics at the interface between a (111) plane of cubic ice and water in the presence of N2 molecules. Two potential models of N2 molecules with and without atomic charges are examined. For both models, N2 molecules bind stably to the interface for a period of 1 ns or longer, and the stability of the binding is higher for the charged model than for the noncharged model. Free-energy surfaces of an N2 molecule along the interface and along an ideal (111) plane surface of cubic ice suggest that for both models, the position where an N2 molecule binds stably is different at the interface and on the ideal plane surface, and the stability of the binding is much higher for the interface than for the ideal plane surface. For both models, stacking-disordered ice grows at the interface, and the formation probability of a hexagonal ice layer in the stacking-disordered ice is higher for the charged model than for the uncharged model. The formation probability for the hexagonal ice layer in the stacking-disordered ice depends not only on the stability of binding but also on the positions where N2 molecules bind to the underlying ice and the number of N2 molecules that bind stably to the underlying ice.

1.
H.
König
, “
Eine kubische Eismodifikation
,“
Z. Kristallogr.
105
,
279
286
(
1943
).
2.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
1999
).
3.
B. J.
Murray
,
D. A.
Knopf
, and
A. K.
Bertram
, “
The formation of cubic ice under conditions relevant to Earth’s atmosphere
,”
Nature
434
,
202
205
(
2005
).
4.
T.
Kobayashi
,
Y.
Furukawa
,
T.
Takahashi
, and
H.
Uyeda
, “
Cubic structure models at junctions in polycrystalline snow crystals
,”
J. Cryst. Growth
35
,
262
268
(
1976
).
5.
E.
Whalley
, “
Scheiner’s halo: Evidence for ice Ic in the atmosphere
,”
Science
211
,
389
390
(
1981
).
6.
E.
Whalley
, “
Cubic ice in nature
,”
J. Phys. Chem.
87
,
4174
4179
(
1983
).
7.
D. M.
Murphy
, “
Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice
,”
Geophys. Res. Lett.
30
,
2230
, (
2003
).
8.
T.
Bartels-Rausch
,
H.-W.
Jacobi
,
T. F.
Kahan
,
J. L.
Thomas
,
E. S.
Thomson
,
J. P. D.
Abbatt
,
M.
Ammann
,
J. R.
Blackford
,
H.
Bluhm
,
C.
Boxe
,
F.
Domine
,
M. M.
Frey
,
I.
Gladich
,
M. I.
Guzmán
,
D.
Heger
,
T.
Huthwelker
,
P.
Klán
,
W. F.
Kuhs
,
M. H.
Kuo
,
S.
Maus
,
S. G.
Moussa
,
V. F.
McNeill
,
J. T.
Newberg
,
J. B. C.
Pettersson
,
M.
Roeselová
, and
J. R.
Sodeau
, “
A review of air–ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow
,”
Atmos. Chem. Phys.
14
,
1587
1633
(
2014
).
9.
J. P. D.
Abbatt
, “
Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction
,”
Chem. Rev.
103
,
4783
4800
(
2003
).
10.
C.
Girardet
and
C.
Toubin
, “
Molecular atmospheric pollutant adsorption on ice: A theoretical survey
,”
Surf. Sci. Rep.
44
,
159
238
(
2001
).
11.
A.
Hudait
,
M. T.
Allen
, and
V.
Molinero
, “
Sink or swim: Ions and organics at the ice–air interface
,”
J. Am. Chem. Soc.
139
,
10095
10103
(
2017
).
12.
A.
Waldner
,
L.
Artiglia
,
X.
Kong
,
F.
Orlando
,
T.
Huthwelker
,
M.
Ammann
, and
T.
Bartels-Rausch
, “
Pre-melting and the adsorption of formic acid at the air–ice interface at 253 K as seen by NEXAFS and XPS
,”
Phys. Chem. Chem. Phys.
20
,
24408
24417
(
2018
).
13.
D.
Prialnik
and
A.
Bar-Nun
, “
Crystallization of amorphous ice as the cause of comet P/Halley’s outburst at 14 AU
,”
Astron. Astrophys.
258
,
L9
L12
(
1992
).
14.
P.
Gronkowski
, “
The search for a cometary outbursts mechanism: A comparison of various theories
,”
Astron. Nachr.
328
,
126
136
(
2007
).
15.
T.
Uchida
and
S.
Takeya
, “
Powder X-ray diffraction observations of ice crystals formed from disaccharide solutions
,”
Phys. Chem. Chem. Phys.
12
,
15034
15039
(
2010
).
16.
J.
Dubochet
,
M.
Adrian
,
J.-J.
Chang
,
J.-C.
Homo
,
J.
Lepault
,
A. W.
McDowall
, and
P.
Schultz
, “
Cryo-electron microscopy of vitrified specimens
,”
Q. Rev. Biophys.
21
,
129
228
(
1988
).
17.
P.
Mehl
and
P.
Boutron
, “
Cryoprotection of red blood cells by 1,3-butanediol and 2,3-butanediol
,”
Cryobiology
25
,
44
54
(
1988
).
18.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
, “
Extent and relevance of stacking disorder in ‘ice IC
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
21264
(
2012
).
19.
K.
Thürmer
and
S.
Nie
, “
Formation of hexagonal and cubic ice during low-temperature growth
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
11757
11762
(
2013
).
20.
K.
Morishige
,
H.
Yasunaga
, and
H.
Uematsu
, “
Stability of cubic ice in mesopores
,”
J. Phys. Chem. C
113
,
3056
3061
(
2009
).
21.
T. L.
Malkin
,
B. J.
Murray
,
C. G.
Salzmann
,
V.
Molinero
,
S. J.
Pickering
, and
T. F.
Whale
, “
Stacking disorder in ice I
,”
Phys. Chem. Chem. Phys.
17
,
60
76
(
2015
).
22.
A.
Hudait
,
S.
Qiu
,
L.
Lupi
, and
V.
Molinero
, “
Free energy contributions and structural characterization of stacking disordered ices
,”
Phys. Chem. Chem. Phys.
18
,
9544
9553
(
2016
).
23.
A.
Hudait
and
V.
Molinero
, “
What determines the ice polymorph in clouds?
,”
J. Am. Chem. Soc.
138
,
8958
8967
(
2016
).
24.
L.
del Rosso
,
M.
Celli
,
F.
Grazzi
,
M.
Catti
,
T. C.
Hansen
,
A. D.
Fortes
, and
L.
Ulivi
, “
Cubic ice Ic without stacking defects obtained from ice XVII
,”
Nat. Mater.
19
,
663
668
(
2020
).
25.
K.
Komatsu
,
S.
Machida
,
F.
Noritake
,
T.
Hattori
,
A.
Sano-Furukawa
,
R.
Yamane
,
K.
Yamashita
, and
H.
Kagi
, “
Ice IC without stacking disorder by evacuating hydrogen from hydrogen hydrate
,”
Nat. Commun.
11
,
464
(
2020
).
26.
W.
Ostwald
, “
Studien Über Die Bildung und Umwandlung Fester Körper: 1. Abhandlung: Übersättigung und Überkaltung
,”
Z. Phys. Chem.
22U
,
289
330
(
1897
).
27.
T.
Takahashi
, “
On the role of cubic structure in ice nucleation
,”
J. Cryst. Growth
59
,
441
449
(
1982
).
28.
H.
Nada
,
J. P.
van der Eerden
, and
Y.
Furukawa
, “
A clear observation of crystal growth of ice from water in a molecular dynamics simulation with a six-site potential model of H2O
,”
J. Cryst. Growth
266
,
297
302
(
2004
).
29.
H.
Nada
and
Y.
Furukawa
, “
Anisotropy in growth kinetics at interfaces between proton-disordered hexagonal ice and water: A molecular dynamics study using the six-site model of H2O
,”
J. Cryst. Growth
283
,
242
256
(
2005
).
30.
M. A.
Carignano
,
P. B.
Shepson
, and
I.
Szleifer
, “
Molecular dynamics simulations of ice growth from supercooled water
,”
Mol. Phys.
103
,
21
23
(
2005
).
31.
H.
Nada
, “
Analysis of ice crystal growth shape under high pressure using molecular dynamics simulation
,”
Cryst. Growth Des.
11
,
3130
3136
(
2011
).
32.
H.
Nada
, “
Anisotropy in geometrically rough structure of ice prismatic plane interface during growth: Development of a modified six-site model of H2O and a molecular dynamics simulation
,”
J. Chem. Phys.
145
,
244706
(
2016
).
33.
M.
Seo
,
E.
Jang
,
K.
Kim
,
S.
Choi
, and
J. S.
Kim
, “
Understanding anisotropic growth behavior of hexagonal ice on a molecular scale: A molecular dynamics simulation study
,”
J. Chem. Phys.
137
,
154503
(
2012
).
34.
P.
Pirzadeh
and
P. G.
Kusalik
, “
On understanding stacking fault formation in ice
,”
J. Am. Chem. Soc.
133
,
704
707
(
2011
).
35.
M.
Matsumoto
,
S.
Saito
, and
I.
Ohmine
, “
Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing
,”
Nature
416
,
409
413
(
2002
).
36.
E. B.
Moore
and
V.
Molinero
, “
Is it cubic? Ice crystallization from deeply supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
20008
20016
(
2011
).
37.
J. C.
Johnston
and
V.
Molinero
, “
Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures
,”
J. Am. Chem. Soc.
134
,
6650
6659
(
2012
).
38.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
, “
Homogeneous ice nucleation from supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
19807
19813
(
2011
).
39.
A.
Haji-Akbari
and
P. G.
Debenedetti
, “
Direct calculation of ice homogeneous nucleation rate for a molecular model of water
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
10582
10588
(
2015
).
40.
K. O. L. F.
Jayaweera
, “
Calculations of ice crystal growth
,”
J. Atmos. Sci.
28
,
728
736
(
1971
).
41.
T.
Kuroda
, “
Rate determining processes of growth of ice crystals from the vapour phase Part I: Theoretical consideration
,”
J. Meteorol. Soc. Japan. Ser. II
62
,
552
562
(
1984
).
42.
T.
Gonda
and
M.
Komabayasi
, “
Growth of ice crystals in the atmospheres of helium-argon mixture
,”
J. Meteorol. Soc. Japan. Ser. II
48
,
440
451
(
1970
).
43.
D.
Lamb
and
W. D.
Scott
, “
Linear growth rates of ice crystals grown from the vapor phase
,”
J. Cryst. Growth
12
,
21
31
(
1972
).
44.
P.
Llombart
,
R. M.
Bergua
,
E. G.
Noya
, and
L. G.
MacDowell
, “
Structure and water attachment rates of ice in the atmosphere: Role of nitrogen
,”
Phys. Chem. Chem. Phys.
21
,
19594
19611
(
2019
).
45.
E.
Pluhařová
,
L.
Vrbka
, and
P.
Jungwirth
, “
Effect of surface pollution on homogeneous ice nucleation: A molecular dynamics study
,”
J. Phys. Chem. C
114
,
7831
7838
(
2010
).
46.
L.
Vrbka
and
P.
Jungwirth
, “
Homogeneous freezing of water starts in the subsurface
,”
J. Phys. Chem. B
110
,
18126
18129
(
2006
).
47.
S.
Bauerecker
,
P.
Ulbig
,
V.
Buch
,
L.
Vrbka
, and
P.
Jungwirth
, “
Monitoring ice nucleation in pure and salty water via high-speed imaging and computer simulations
,”
J. Phys. Chem. C
112
,
7631
7636
(
2008
).
48.
T. P.
Liyana-Arachchi
,
K. T.
Valsaraj
, and
F. R.
Hung
, “
Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene
,”
J. Phys. Chem. A
116
,
8539
8546
(
2012
).
49.
T.
Kuroda
and
R.
Lacmann
, “
Growth kinetics of ice from the vapour phase and its growth forms
,”
J. Cryst. Growth
56
,
189
205
(
1982
).
50.
Y.
Furukawa
and
H.
Nada
, “
Anisotropic surface melting of an ice crystal and its relationship to growth forms
,”
J. Phys. Chem. B
101
,
6167
6170
(
1997
).
51.
G.
Sazaki
,
S.
Zepeda
,
S.
Nakatsubo
,
M.
Yokomine
, and
Y.
Furukawa
, “
Quasi-liquid layers on ice crystal surfaces are made up of two different phases
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
1052
1055
(
2012
).
52.
H.
Asakawa
,
G.
Sazaki
,
K.
Nagashima
,
S.
Nakatsubo
, and
Y.
Furukawa
, “
Two types of quasi-liquid layers on ice crystals are formed kinetically
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
1749
1753
(
2016
).
53.
M.
Elbaum
,
S. G.
Lipson
, and
J. G.
Dash
, “
Optical study of surface melting on ice
,”
J. Cryst. Growth
129
,
491
505
(
1993
).
54.
H.
Nada
and
Y.
Furukawa
, “
Anisotropy in structural transitions between basal and prismatic faces of ice studied by molecular dynamics simulation
,”
Surf. Sci.
446
,
1
16
(
2000
).
55.
M. M.
Conde
,
C.
Vega
, and
A.
Patrykiejew
, “
The thickness of a liquid layer on the free surface of ice as obtained from computer simulation
,”
J. Chem. Phys.
129
,
014702
(
2008
).
56.
Y.
Qiu
and
V.
Molinero
, “
Why is it so difficult to identify the onset of ice premelting?
,”
J. Phys. Chem. Lett.
9
,
5179
5182
(
2018
).
57.
T.
Mitsui
and
K.
Aoki
, “
Fluctuation spectroscopy of surface melting of ice with and without impurities
,”
Phys. Rev. E
99
,
010801
(
2019
).
58.
M.
Elbaum
, “
Roughening transition observed on the prism facet of ice
,”
Phys. Rev. Lett.
67
,
2982
2985
(
1991
).
59.
M.
Elbaum
and
M.
Schick
, “
Application of the theory of dispersion forces to the surface melting of ice
,”
Phys. Rev. Lett.
66
,
1713
1716
(
1991
).
60.
A.
Lied
,
H.
Dosch
, and
J. H.
Bilgram
, “
Surface melting of ice Ih single crystals revealed by glancing angle X-ray scattering
,”
Phys. Rev. Lett.
72
,
3554
3557
(
1994
).
61.
H.
Dosch
,
A.
Lied
, and
J. H.
Bilgram
, “
Glancing-angle X-ray scattering studies of the premelting of ice surfaces
,”
Surf. Sci.
327
,
145
164
(
1995
).
62.
J. S.
Wettlaufer
, “
Impurity effects in the premelting of ice
,”
Phys. Rev. Lett.
82
,
2516
2519
(
1999
).
63.
S. A.
Bari
and
J.
Hallett
, “
Nucleation and growth of bubbles at an ice–water interface
,”
J. Glaciol.
13
,
489
520
(
1974
).
64.
S.
Pradhan
and
P. K.
Bikkina
An analytical method to estimate supersaturation in gas–liquid systems as a function of pressure-reduction step and waiting time
,”
Eng
3
,
116
123
(
2022
).
65.
W. F.
Kuhs
,
G.
Genov
,
D. K.
Staykova
, and
T.
Hansen
, “
Ice perfection and onset of anomalous preservation of gas hydrates
,”
Phys. Chem. Chem. Phys.
6
,
4917
4920
(
2004
).
66.
S.
Takeya
and
J. A.
Ripmeester
, “
Dissociation behavior of clathrate hydrates to ice and dependence on guest molecules
,”
Angew. Chem., Int. Ed. Engl.
47
,
1276
1279
(
2008
).
67.
H.
Nada
and
J. P. J. M.
van der Eerden
, “
An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O
,”
J. Chem. Phys.
118
,
7401
(
2003
).
68.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
69.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
70.
S.
Picaud
, “
Dynamics of TIP5P and TIP4P/ice potentials
,”
J. Chem. Phys.
125
,
174712
(
2006
).
71.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
, “
The melting temperature of the most common models of water
,”
J. Chem. Phys.
122
,
114507
(
2005
).
72.
K.
Chae
and
A.
Violi
, “
Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study
,”
J. Chem. Phys.
134
,
044537
(
2011
).
73.
C. S.
Murthy
,
K.
Singer
,
M. L.
Klein
, and
I. R.
McDonald
, “
Pairwise additive effective potentials for nitrogen
,”
Mol. Phys.
41
,
1387
1399
(
1980
).
74.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
75.
J.
Sadlej
,
B.
Rowland
,
J. P.
Devlin
, and
V.
Buch
, “
Vibrational spectra of water complexes with H2, N2, and CO
,”
J. Chem. Phys.
102
,
4804
4818
(
1995
).
76.
A. S.
Tulegenov
,
R. J.
Wheatley
,
M. P.
Hodges
, and
A. H.
Harvey
, “
Intermolecular potential and second virial coefficient of the water-nitrogen complex
,”
J. Chem. Phys.
126
,
094305
(
2007
).
77.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
(
1984
).
78.
W.
Smith
and
T. R.
Forester
, “
DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package
,”
J. Mol. Graphics
14
,
136
141
(
1996
).
79.
V. L
Golo
and
K.V.
Shaĭtan
, “
Dynamic attractor for the Berendsen thermostat and the slow dynamics of biomacromolecules
,”
Biofizika
47
,
611
617
(
2002
).
80.
J. E.
Basconi
and
M. R.
Shirts
, “
Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations
,”
J. Chem. Theory Comput.
9
,
2887
2899
(
2013
).
81.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
82.
H.
Nada
, “
Melt crystallization mechanism analyzed with dimensional reduction of high-dimensional data representing distribution function geometries
,”
Sci. Rep.
10
,
15465
(
2020
).
83.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
84.
S.
Ghosh
,
K.
Jana
, and
B.
Ganguly
, “
Revealing the mechanistic pathway of cholinergic inhibition of Alzheimer’s disease by donepezil: A metadynamics simulation study
,”
Phys. Chem. Chem. Phys.
21
,
13578
13589
(
2019
).
85.
Z.
Jiang
,
K.
Klyukin
,
K.
Miller
, and
V.
Alexandrov
, “
Mechanistic theoretical investigation of self-discharge reactions in a vanadium redox flow battery
,”
J. Phys. Chem. B
123
,
3976
3983
(
2019
).
86.
R.
Martonák
,
A.
Laio
, and
M.
Parrinello
, “
Predicting crystal structures: The Parrinello-Rahman method revisited
,”
Phys. Rev. Lett.
90
,
075503
(
2003
).
87.
R.
Martonák
,
D.
Donadio
,
A. R.
Oganov
, and
M.
Parrinello
, “
Crystal structure transformations in SiO2 from classical and ab initio metadynamics
,”
Nat. Mater.
5
,
623
626
(
2006
).
88.
Z.
Bjelobrk
,
P. M.
Piaggi
,
T.
Weber
,
T.
Karmakar
,
M.
Mazzotti
, and
M.
Parrinello
, “
Naphthalene crystal shape prediction from molecular dynamics simulations
,”
CrystEngComm
21
,
3280
3288
(
2019
).
89.
D.
Quigley
and
P. M.
Rodger
, “
Metadynamics simulations of ice nucleation and growth
,”
J. Chem. Phys.
128
,
154518
(
2008
).
90.
H.
Niu
,
P. M.
Piaggi
,
M.
Invernizzi
, and
M.
Parrinello
, “
Molecular dynamics simulations of liquid silica crystallization
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
5348
5352
(
2018
).
91.
H.
Nada
, “
Pathways for the formation of ice polymorphs from water predicted by a metadynamics method
,”
Sci. Rep.
10
,
4708
(
2020
).
92.
R.
Capelli
,
A.
Bochicchio
,
G.
Piccini
,
R.
Casasnovas
,
P.
Carloni
, and
M.
Parrinello
, “
Chasing the full free energy landscape of neuroreceptor/ligand unbinding by metadynamics simulations
,”
J. Chem. Theory Comput.
15
,
3354
3361
(
2019
).
93.
D.
Pramanik
,
Z.
Smith
,
A.
Kells
, and
P.
Tiwary
, “
Can one trust kinetic and thermodynamic observables from biased metadynamics simulations?: Detailed quantitative benchmarks on millimolar drug fragment dissociation
,”
J. Phys. Chem. B
123
,
3672
3678
(
2019
).
94.
H.
Nada
,
T.
Sakamoto
,
M.
Henmi
,
T.
Ogawa
,
M.
Kimura
, and
T.
Kato
, “
Transport mechanisms of water molecules and ions in sub-nano channels of nanostructured water treatment liquid-crystalline membranes: A molecular dynamics study
,”
Environ. Sci.: Water Res. Technol.
6
,
604
611
(
2020
).
95.
A.
YazdanYar
,
U.
Aschauer
, and
P.
Bowen
, “
Adsorption free energy of single amino acids at the rutile (110)/water interface studied by well-tempered metadynamics
,”
J. Phys. Chem. C
122
,
11355
11363
(
2018
).
96.
H.
Nada
,
M.
Kobayashi
, and
M.
Kakihana
, “
Anisotropy in stable conformations of hydroxylate ions between the {001} and {110} planes of TiO2 rutile crystals for glycolate, lactate, and 2-hydroxybutyrate ions studied by metadynamics method
,”
ACS Omega
4
,
11014
11024
(
2019
).
97.
H.
Nada
, “
Stable binding conformations of polymaleic and polyacrylic acids at a calcite surface in the presence of countercations: A metadynamics study
,”
Langmuir
38
,
7046
7057
(
2022
).
98.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).
99.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
, and
M.
Parrinello
, “
PLUMED: A portable plugin for free-energy calculations with molecular dynamics
,”
Comput. Phys. Commun.
180
,
1961
1972
(
2009
).
100.
O. A.
Karim
and
A. D. J.
Haymet
, “
The ice/water interface: A molecular dynamics simulation study
,”
J. Chem. Phys.
89
,
6889
(
1988
).
101.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
102.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
103.
A. W.
Adamson
,
L. M.
Dormant
, and
M.
Orem
, “
Physical adsorption of vapors on ice I. Nitrogen
,”
J. Colloid Interface Sci.
25
,
206
217
(
1967
).
104.
B.
Schmitt
,
J.
Ocampo
, and
J.
Klinger
, “
Structure and evolution of different ice surfaces at low temperature adsorption studies
,”
J. Phys., Colloq.
48
,
C1-C519
C1-525
(
1987
).
105.
J. T.
Hoff
,
D.
Gregor
,
D.
Mackay
,
F.
Wania
, and
C. Q.
Jia
, “
Measurement of the specific surface area of snow with the nitrogen adsorption technique
,”
Environ. Sci. Technol.
32
,
58
62
(
1998
).
106.
H.
Nada
, “
Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: A molecular dynamics simulation of a three-phase system
,”
J. Phys. Chem. B
110
,
16526
16534
(
2006
).
107.
G.-J.
Kroes
, “
Surface melting of the (0001) face of TIP4P ice
,”
Surf. Sci.
275
,
365
382
(
1992
).
108.
N. H.
Fletcher
, “
Reconstruction of ice crystal surfaces at low temperatures
,”
Philos. Mag. B
66
,
109
115
(
1992
).
109.
P.
Llombart
,
E. G.
Noya
, and
L. G.
MacDowell
, “
Surface phase transitions and crystal habits of ice in the atmosphere
,”
Sci. Adv.
6
,
eaay9322
(
2020
).

Supplementary Material

You do not currently have access to this content.