Methanol as a basic liquid and the simplest alcohol is widely used in industry and scientific experiments. However, there are still no reliable data on the thermodynamic properties of methanol at high pressure. Here, we present an experimental and computational study of the thermodynamic properties of liquid methanol under high pressure up to 15 kbar, which significantly exceeds previously reported pressures. A temperature response to a small adiabatic change in pressure has been measured using a piston–cylinder apparatus. We have compared our experimental results with the literature data for lower pressures and NIST approximations. We find that all existing experimental data do not agree with each other and with our experiments. The NIST approximations are mainly based on low pressure data and appear to be unreliable in the high pressure region, giving even qualitatively wrong results. OPLS and COMPASS force field models have been used in the method of molecular dynamics. The agreement of molecular simulation with our experimental data is definitely unsatisfactory, which means that the most common computational models of methanol are not sufficiently good. We hope that these experimental data and approximations will help in developing better computational models.

1.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
49
,
3
114
(
1913
).
2.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
74
,
425
(
1942
).
3.
I. M.
Abdulagatov
,
N. G.
Polikhronidi
,
A.
Abdurashidova
,
S. B.
Kiselev
, and
J. F.
Ely
,
Int. J. Thermophys.
26
,
1327
(
2005
).
4.
J. M.
Brown
,
L. J.
Slutsky
,
K. A.
Nelson
, and
L.-T.
Cheng
,
Science
241
,
65
67
(
1988
).
5.
T.
Sun
,
S. N.
Biswas
,
N. J.
Trappeniers
, and
C. A.
Ten Seldam
,
J. Chem. Eng. Data
33
,
395
398
(
1988
).
6.
R. D.
Goodwin
,
J. Phys. Chem. Ref. Data
16
,
799
(
1987
).
7.
J. R. S.
Machado
and
W. B.
Streett
,
J. Chem. Eng. Data
28
(
2
),
218
223
(
1983
).
8.
E. L.
Gromnitskaya
,
O. V.
Stal’gorova
,
O. F.
Yagafarov
,
V. V.
Brazhkin
,
A. G.
Lyapin
, and
S. V.
Popova
,
JETP Lett.
80
,
597
601
(
2004
).
9.
M. V.
Kondrin
,
A. A.
Pronin
,
Y. B.
Lebed
, and
V. V.
Brazhkin
,
J. Chem. Phys.
139
,
084510
(
2013
).
10.
See https://webbook.nist.gov/chemistry/fluid/ for thermodynamic data of methanol based on approximations of existing experimental data.
11.
L. N.
Dzhavadov
and
Yu. I.
Krotov
,
Instrum. Exp. Tech.
28
,
687
(
1985
).
12.
L. N.
Dzhavadov
,
V. V.
Brazhkin
,
Yu. D.
Fomin
,
V. N.
Ryzhov
, and
E. N.
Tsiok
,
J. Chem. Phys.
152
,
154501
(
2020
).
13.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
(
45
),
11225
11236
(
1996
).
14.
H.
Sun
,
J. Phys. Chem. B
102
(
38
),
7338
7364
(
1998
).
15.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
16.
L.
Piazza
and
R.
Span
,
Fluid Phase Equilib.
349
,
12
24
(
2013
).

Supplementary Material

You do not currently have access to this content.