Time-resolved IR pump–probe (IR-PP) and two-dimensional IR (2D-IR) spectroscopy are valuable techniques for studying various ultrafast chemical and biological processes in solutions. The time-dependent changes of nonlinear IR signals reflecting fast molecular processes such as vibrational energy transfer and chemical exchange provide invaluable information on the rates and mechanisms of solvation dynamics and structural transitions of multispecies vibrationally interacting molecular systems. However, due to the intrinsic difficulties in distinguishing the contributions of molecule-specific processes to the time-resolved IR signals from those resulting from local heating, it becomes challenging to interpret time-resolved IR-PP and 2D-IR spectra exhibiting transient growing-in spectral components and cross-peaks unambiguously. Here, theoretical considerations of various effects of vibrational coupling, energy transfer, chemical exchange, the generation of hot ground states, molecular photothermal process, and their combinations on the line shapes and time-dependent intensities of IR-PP spectra and 2D-IR diagonal peaks and cross-peaks are presented. We anticipate that the present work will help researchers using IR pump–probe and 2D-IR techniques to distinguish local heating-induced photothermal signals from genuine nonlinear IR signals.

1.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
, “
Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy
,”
J. Phys. Chem. B
102
,
6123
6138
(
1998
).
2.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
3.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
2009
).
4.
Z.
Ganim
,
H. S.
Chung
,
A. W.
Smith
,
L. P.
DeFlores
,
K. C.
Jones
, and
A.
Tokmakoff
, “
Amide I two-dimensional infrared spectroscopy of proteins
,”
Acc. Chem. Res.
41
,
432
441
(
2008
).
5.
Y. S.
Kim
and
R. M.
Hochstrasser
, “
Chemical exchange 2D IR of hydrogen-bond making and breaking
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
11185
(
2005
).
6.
J.
Zheng
,
K.
Kwak
,
J.
Asbury
,
X.
Chen
,
I. R.
Piletic
, and
M. D.
Fayer
, “
Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time
,”
Science
309
,
1338
1343
(
2005
).
7.
S.
Woutersen
,
Y.
Mu
,
G.
Stock
, and
P.
Hamm
, “
Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol
,”
Chem. Phys.
266
,
137
147
(
2001
).
8.
K.
Kwac
,
H.
Lee
, and
M.
Cho
, “
Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: Linear and nonlinear vibrational spectra
,”
J. Chem. Phys.
120
,
1477
1490
(
2004
).
9.
K.-K.
Lee
,
K.-H.
Park
,
D.
Kwon
,
J.-H.
Choi
,
H.
Son
,
S.
Park
, and
M.
Cho
, “
Ion-pairing dynamics of Li+ and SCN in dimethylformamide solution: Chemical exchange two-dimensional infrared spectroscopy
,”
J. Chem. Phys.
134
,
064506
(
2011
).
10.
K. H.
Park
,
S. R.
Choi
,
J. H.
Choi
,
S.
Park
, and
M.
Cho
, “
Real-time probing of ion pairing dynamics with 2DIR spectroscopy
,”
ChemPhysChem
11
,
3632
3637
(
2010
).
11.
Y.
Kwon
and
S.
Park
, “
Complexation dynamics of CH3SCN and Li+ in acetonitrile studied by two-dimensional infrared spectroscopy
,”
Phys. Chem. Chem. Phys.
17
,
24193
24200
(
2015
).
12.
R.
Yuan
,
C.
Yan
, and
M.
Fayer
, “
Ion-molecule complex dissociation and formation dynamics in LiCl aqueous solutions from 2D IR spectroscopy
,”
J. Phys. Chem. B
122
,
10582
10592
(
2018
).
13.
H.
Chen
,
H.
Bian
,
J.
Li
,
X.
Wen
,
Q.
Zhang
,
W.
Zhuang
, and
J.
Zheng
, “
Vibrational energy transfer: An angstrom molecular ruler in studies of ion pairing and clustering in aqueous solutions
,”
J. Phys. Chem. B
119
,
4333
4349
(
2015
).
14.
J. A.
Dunbar
,
E. J.
Arthur
,
A. M.
White
, and
K. J.
Kubarych
, “
Ultrafast 2D-IR and simulation investigations of preferential solvation and cosolvent exchange dynamics
,”
J. Phys. Chem. B
119
,
6271
6279
(
2015
).
15.
K.
Kwak
,
S.
Park
, and
M. D.
Fayer
, “
Dynamics around solutes and solute-solvent complexes in mixed solvents
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
14221
14226
(
2007
).
16.
L. M.
Kiefer
and
K. J.
Kubarych
, “
Solvent exchange in preformed photocatalyst-donor precursor complexes determines efficiency
,”
Chem. Sci.
9
(
6
),
1527
1533
(
2018
).
17.
D. E.
Rosenfeld
and
M. D.
Fayer
, “
Excitation transfer induced spectral diffusion and the influence of structural spectral diffusion
,”
J. Chem. Phys.
137
,
064109
(
2012
).
18.
K.-K.
Lee
,
K.
Park
,
H.
Lee
,
Y.
Noh
,
D.
Kossowska
,
K.
Kwak
, and
M.
Cho
, “
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery
,”
Nat. Commun.
8
,
14658
(
2017
).
19.
C.
Liang
,
K.
Kwak
, and
M.
Cho
, “
Revealing the solvation structure and dynamics of carbonate electrolytes in lithium-ion batteries by two-dimensional infrared spectrum modeling
,”
J. Phys. Chem. Lett.
8
,
5779
5784
(
2017
).
20.
K. D.
Fulfer
and
D. G.
Kuroda
, “
Solvation structure and dynamics of the lithium ion in organic carbonate-based electrolytes: A time-dependent infrared spectroscopy study
,”
J. Phys. Chem. C
120
,
24011
24022
(
2016
).
21.
K. D.
Fulfer
and
D. G.
Kuroda
, “
A comparison of the solvation structure and dynamics of the lithium ion in linear organic carbonates with different alkyl chain lengths
,”
Phys. Chem. Chem. Phys.
19
,
25140
25150
(
2017
).
22.
K. D.
Fulfer
and
D. G.
Kuroda
, “
Ion speciation of lithium hexafluorophosphate in dimethyl carbonate solutions: An infrared spectroscopy study
,”
Phys. Chem. Chem. Phys.
20
,
22710
22718
(
2018
).
23.
C.
Lim
,
J. H.
Kim
,
Y.
Chae
,
K.-K.
Lee
,
K.
Kwak
, and
M.
Cho
, “
Solvation structure around Li+ ions in organic carbonate electrolytes: Spacer-free thin cell IR spectroscopy
,”
Anal. Chem.
93
,
12594
12601
(
2021
).
24.
X.
Zhang
and
D. G.
Kuroda
, “
An ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: A comparison between linear and cyclic carbonates
,”
J. Chem. Phys.
150
,
184501
(
2019
).
25.
H.
Son
,
K.-H.
Park
,
K.-W.
Kwak
,
S.
Park
, and
M.
Cho
, “
Ultrafast intermolecular vibrational excitation transfer from solute to solvent: Observation of intermediate states
,”
Chem. Phys.
422
,
37
46
(
2013
).
26.
T.
Steinel
,
J. B.
Asbury
,
J.
Zheng
, and
M. D.
Fayer
, “
Watching hydrogen bonds break: A transient absorption study of water
,”
J. Phys. Chem. A
108
,
10957
10964
(
2004
).
27.
Y. L. A.
Rezus
and
H. J.
Bakker
, “
On the orientational relaxation of HDO in liquid water
,”
J. Chem. Phys.
123
,
114502
(
2005
).
28.
T. L. C.
Jansen
,
S.
Saito
,
J.
Jeon
, and
M.
Cho
, “
Theory of coherent two-dimensional vibrational spectroscopy
,”
J. Chem. Phys.
150
,
100901
(
2019
).
29.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
, “
Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution
,”
J. Phys. Chem. A
107
,
5258
5279
(
2003
).
30.
T. L. C.
Jansen
and
J.
Knoester
, “
Waiting time dynamics in two-dimensional infrared spectroscopy
,”
Acc. Chem. Res.
42
,
1405
1411
(
2009
); accessed 11 June 2012.
31.
R.
Fritzsch
,
S.
Hume
,
L.
Minnes
,
M. J.
Baker
,
G. A.
Burley
, and
N. T.
Hunt
, “
Two-dimensional infrared spectroscopy: An emerging analytical tool?
,”
Analyst
145
,
2014
2024
(
2020
).
32.
Z.
Lin
,
P.
Keiffer
, and
I. V.
Rubtsov
, “
Method for determining small anharmonicity values from 2DIR spectra using thermally induced shifts of frequencies of high-frequency modes
,”
J. Phys. Chem. B
115
,
5347
5353
(
2011
).
33.
I. V.
Rubtsov
, “
Relaxation-assisted two-dimensional infrared (RA 2DIR) method: Accessing distances over 10 Å and measuring bond connectivity patterns
,”
Acc. Chem. Res.
42
,
1385
1394
(
2009
).
34.
Z.
Wang
,
A.
Pakoulev
, and
D. D.
Dlott
, “
Watching vibrational energy transfer in liquids with atomic spatial resolution
,”
Science
296
,
2201
2203
(
2002
).
35.
J. C.
Deàk
,
L. K.
Iwaki
, and
D. D.
Dlott
, “
Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile
,”
J. Phys. Chem. A
102
,
8193
8201
(
1998
).
36.
D. D.
Dlott
, “
Vibrational energy redistribution in polyatomic liquids: 3D infrared-Raman spectroscopy
,”
Chem. Phys.
266
,
149
166
(
2001
).
37.
B.
Dereka
,
N. H. C.
Lewis
,
J. H.
Keim
,
S. A.
Snyder
, and
A.
Tokmakoff
, “
Characterization of acetonitrile isotopologues as vibrational probes of electrolytes
,”
J. Phys. Chem. B
126
,
278
291
(
2022
).
38.
B.
Dereka
,
N. H. C.
Lewis
,
Y.
Zhang
,
N. T.
Hahn
,
J. H.
Keim
,
S. A.
Snyder
,
E. J.
Maginn
, and
A.
Tokmakoff
, “
Exchange-mediated transport in battery electrolytes: Ultrafast or ultraslow?
,”
J. Am. Chem. Soc.
144
,
8591
8604
(
2022
).
39.
J.
Jeon
,
J. H.
Lim
,
S.
Kim
,
H.
Kim
, and
M.
Cho
, “
Simultaneous spectral and temporal analyses of kinetic energies in nonequilibrium systems: Theory and application to vibrational relaxation of O–D stretch mode of HOD in water
,”
J. Phys. Chem. A
119
,
5356
5367
(
2015
).
40.
Y.
Bai
,
D.
Zhang
,
L.
Lan
,
Y.
Huang
,
K.
Maize
,
A.
Shakouri
, and
J. X.
Cheng
, “
Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption
,”
Sci. Adv.
5
(
7
),
eaav7127
(
2019
).
41.
J. M.
Lim
,
C.
Park
,
J.-S.
Park
,
C.
Kim
,
B.
Chon
, and
M.
Cho
, “
Cytoplasmic protein imaging with mid-infrared photothermal microscopy: Cellular dynamics of live neurons and oligodendrocytes
,”
J. Phys. Chem. Lett.
10
,
2857
2861
(
2019
).
42.
S.
Adhikari
,
P.
Spaeth
,
A.
Kar
,
M. D.
Baaske
,
S.
Khatua
, and
M.
Orrit
, “
Photothermal microscopy: Imaging the optical absorption of single nanoparticles and single molecules
,”
ACS Nano
14
,
16414
16445
(
2020
).
43.
Z.
Li
,
K.
Aleshire
,
M.
Kuno
, and
G. V.
Hartland
, “
Super-resolution far-field infrared imaging by photothermal heterodyne imaging
,”
J. Phys. Chem. B
121
,
8838
8846
(
2017
).
44.
Z.-C.
Zeng
,
H.
Wang
,
P.
Johns
,
G. V.
Hartland
, and
Z. D.
Schultz
, “
Photothermal microscopy of coupled nanostructures and the impact of nanoscale heating in surface-enhanced Raman spectroscopy
,”
J. Phys. Chem. C
121
,
11623
11631
(
2017
).
45.
D.
Zhang
,
C.
Li
,
C.
Zhang
,
.M. N.
Slipchenko
,
G.
Eakins
, and
J. X.
Cheng
, “
Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution
,”
Sci. Adv.
2
,
e1600521
(
2016
).
46.
S. A.
Yamada
,
S. T.
Hung
,
J. Y.
Shin
, and
M. D.
Fayer
, “
Complex formation and dissociation dynamics on amorphous silica surfaces
,”
J. Phys. Chem. B
125
,
4566
4581
(
2021
).
47.
H.
Bian
,
H.
Chen
,
J.
Li
,
X.
Wen
, and
J.
Zheng
, “
Nonresonant and resonant mode-specific intermolecular vibrational energy transfers in electrolyte aqueous solutions
,”
J. Phys. Chem. A
115
,
11657
11664
(
2011
).
48.
H.
Chen
,
X.
Wen
,
X.
Guo
, and
J.
Zheng
, “
Intermolecular vibrational energy transfers in liquids and solids
,”
Phys. Chem. Chem. Phys.
16
,
13995
14014
(
2014
).
49.
J.
Bredenbeck
,
J.
Helbing
, and
P.
Hamm
, “
Labeling vibrations by light: Ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer
,”
J. Am. Chem. Soc.
126
,
990
991
(
2004
).
You do not currently have access to this content.