Accurate theoretical prediction of the band offsets at interfaces of semiconductor heterostructures can often be quite challenging. Although density functional theory has been reasonably successful to carry out such calculations, efficient, accurate semilocal functionals are desirable to reduce the computational cost. In general, the semilocal functionals based on the generalized gradient approximation (GGA) significantly underestimate the bulk bandgaps. This, in turn, results in inaccurate estimates of the band offsets at the heterointerfaces. In this paper, we investigate the performance of several advanced meta-GGA functionals in the computational prediction of band offsets at semiconductor heterojunctions. In particular, we investigate the performance of r2SCAN (two times revised strongly constrained and appropriately normed functional), rMGGAC (revised semilocal functional based on cuspless hydrogen model and Pauli kinetic energy density functional), mTASK (modified Aschebrock and Kümmel meta-GGA functional), and local modified Becke–Johnson exchange-correlation functionals. Our results strongly suggest that these meta-GGA functionals for supercell calculations perform quite well, especially, when compared to computationally more demanding GW calculations. We also present band offsets calculated using ionization potentials and electron affinities, as well as band alignment via the branch point energies. Overall, our study shows that the aforementioned meta-GGA functionals can be used within the density functional theory framework to estimate the band offsets in semiconductor heterostructures with predictive accuracy.

1.
A.
Facchetti
and
T. J.
Marks
, “
Transparent electronics: From synthesis to applications
,” in
Transparent Electronics: From Synthesis to Applications
(
John Wiley & Sons
,
Chichester
,
2010
).
2.
A.
Franciosi
and
C. G.
Van de Walle
,
Surf. Sci. Rep.
25
,
1
(
1996
).
3.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
4.
W.
Mönch
, “
Electronic properties of semiconductor interfaces
,” in
Springer Handbook of Electronic and Photonic Materials
, edited by
S.
Kasap
and
P.
Capper
(
Springer International Publishing
,
Cham
,
2017
), p.
1
.
5.
J.
Robertson
,
J. Vac. Sci. Technol. A
31
,
050821
(
2013
).
6.
Z. I.
Alferov
,
Rev. Mod. Phys.
73
,
767
(
2001
).
8.
W. A.
Harrison
,
E. A.
Kraut
,
J. R.
Waldrop
, and
R. W.
Grant
,
Phys. Rev. B
18
,
4402
(
1978
).
9.
N.
Nakagawa
,
H. Y.
Hwang
, and
D. A.
Muller
,
Nat. Mater.
5
,
204
(
2006
).
10.
Y.
Ikebe
,
T.
Morimoto
,
R.
Masutomi
,
T.
Okamoto
,
H.
Aoki
, and
R.
Shimano
,
Phys. Rev. Lett.
104
,
256802
(
2010
).
11.
A. V.
Stier
,
C. T.
Ellis
,
J.
Kwon
,
H.
Xing
,
H.
Zhang
,
D.
Eason
,
G.
Strasser
,
T.
Morimoto
,
H.
Aoki
,
H.
Zeng
,
B. D.
McCombe
, and
J.
Cerne
,
Phys. Rev. Lett.
115
,
247401
(
2015
).
12.
V.
Dziom
,
A.
Shuvaev
,
A. V.
Shchepetilnikov
,
D.
MacFarland
,
G.
Strasser
, and
A.
Pimenov
,
Phys. Rev. B
99
,
045305
(
2019
).
13.
J.
Anversa
,
P.
Piquini
,
A.
Fazzio
, and
T. M.
Schmidt
,
Phys. Rev. B
90
,
195311
(
2014
).
14.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
,
Science
314
,
1757
(
2006
).
15.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
,
Science
318
,
766
(
2007
).
16.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
17.
W. R.
Frensley
and
H.
Kroemer
,
Phys. Rev. B
16
,
2642
(
1977
).
18.
C.
Tejedor
and
F.
Flores
,
J. Phys. C: Solid State Phys.
11
,
L19
(
1977
).
19.
W. E.
Pickett
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
17
,
815
(
1978
).
20.
C. G.
Van de Walle
and
R. M.
Martin
,
Phys. Rev. B
35
,
8154
(
1987
).
21.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
22.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
23.
E.
Engel
and
R. M.
Dreizler
,
Density Functional Theory
(
Springer
,
2013
).
24.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
25.
R. O.
Jones
,
Rev. Mod. Phys.
87
,
897
(
2015
).
26.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
28.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
29.
L.
Weston
,
H.
Tailor
,
K.
Krishnaswamy
,
L.
Bjaalie
, and
C. G.
Van de Walle
,
Comput. Mater. Sci.
151
,
174
(
2018
).
30.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K. U.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
,
H.
Peng
,
J.
Sun
,
E.
Trushin
, and
A.
Görling
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
2801
(
2017
).
31.
F.
Tran
,
P.
Blaha
, and
K.
Schwarz
,
J. Phys.: Condens. Matter
19
,
196208
(
2007
).
32.
P.
Borlido
,
J.
Schmidt
,
A. W.
Huran
,
F.
Tran
,
M. A. L.
Marques
, and
S.
Botti
,
npj Comput. Mater.
6
,
96
(
2020
).
33.
B.
Patra
,
S.
Jana
,
L. A.
Constantin
, and
P.
Samal
,
Phys. Rev. B
100
,
045147
(
2019
).
34.
F.
Tran
,
S.
Ehsan
, and
P.
Blaha
,
Phys. Rev. Mater.
2
,
023802
(
2018
).
35.
S.
Jana
,
K.
Sharma
, and
P.
Samal
,
J. Chem. Phys.
149
,
164703
(
2018
).
36.
S.
Jana
,
A.
Patra
, and
P.
Samal
,
J. Chem. Phys.
149
,
044120
(
2018
).
37.
F.
Tran
and
P.
Blaha
,
J. Phys. Chem. A
121
,
3318
(
2017
).
38.
F.
Tran
,
J.
Doumont
,
L.
Kalantari
,
A. W.
Huran
,
M. A. L.
Marques
, and
P.
Blaha
,
J. Appl. Phys.
126
,
110902
(
2019
).
39.
Y.
Hinuma
,
A.
Grüneis
,
G.
Kresse
, and
F.
Oba
,
Phys. Rev. B
90
,
155405
(
2014
).
40.
A.
Grüneis
,
G.
Kresse
,
Y.
Hinuma
, and
F.
Oba
,
Phys. Rev. Lett.
112
,
096401
(
2014
).
41.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
42.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
43.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
1187
(
2004
).
44.
S.
Jana
and
P.
Samal
,
Phys. Chem. Chem. Phys.
21
,
3002
(
2019
).
45.
S.
Jana
,
A.
Patra
,
L. A.
Constantin
, and
P.
Samal
,
J. Chem. Phys.
152
,
044111
(
2020
).
46.
S.
Jana
,
B.
Patra
,
S.
Śmiga
,
L. A.
Constantin
, and
P.
Samal
,
Phys. Rev. B
102
,
155107
(
2020
).
47.
H.
Zheng
,
M.
Govoni
, and
G.
Galli
,
Phys. Rev. Mater.
3
,
073803
(
2019
).
48.
N. P.
Brawand
,
M.
Vörös
,
M.
Govoni
, and
G.
Galli
,
Phys. Rev. X
6
,
041002
(
2016
).
49.
N. P.
Brawand
,
M.
Govoni
,
M.
Vörös
, and
G.
Galli
,
J. Chem. Theory Comput.
13
,
3318
(
2017
).
50.
W.
Chen
,
G.
Miceli
,
G.-M.
Rignanese
, and
A.
Pasquarello
,
Phys. Rev. Mater.
2
,
073803
(
2018
).
51.
Z.-H.
Cui
,
Y.-C.
Wang
,
M.-Y.
Zhang
,
X.
Xu
, and
H.
Jiang
,
J. Phys. Chem. Lett.
9
,
2338
(
2018
).
52.
S.
Jana
,
L. A.
Constantin
,
S.
Śmiga
, and
P.
Samal
,
J. Chem. Phys.
157
,
024102
(
2022
).
54.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
,
5390
(
1986
).
55.
Z.
Zhang
,
Y.
Guo
,
H.
Lu
,
S. J.
Clark
, and
J.
Robertson
,
Appl. Phys. Lett.
116
,
131602
(
2020
).
56.
T.
Bischoff
,
I.
Reshetnyak
, and
A.
Pasquarello
,
Phys. Rev. B
101
,
235302
(
2020
).
57.
P.
Borlido
,
M. A. L.
Marques
, and
S.
Botti
,
J. Chem. Theory Comput.
14
,
939
(
2018
).
58.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
,
Phys. Rev. Lett.
103
,
026403
(
2009
).
59.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
60.
D.
Mejia-Rodriguez
and
S. B.
Trickey
,
Phys. Rev. B
98
,
115161
(
2018
).
61.
B.
Patra
,
S.
Jana
,
L. A.
Constantin
, and
P.
Samal
,
Phys. Rev. B
100
,
155140
(
2019
).
62.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
,
J. Phys. Chem. Lett.
11
,
8208
(
2020
).
63.
S.
Jana
,
S. K.
Behera
,
S.
Śmiga
,
L. A.
Constantin
, and
P.
Samal
,
New J. Phys.
23
,
063007
(
2021
).
64.
B.
Neupane
,
H.
Tang
,
N. K.
Nepal
,
S.
Adhikari
, and
A.
Ruzsinszky
,
Phys. Rev. Mater.
5
,
063803
(
2021
).
65.
T.
Aschebrock
and
S.
Kümmel
,
Phys. Rev. Res.
1
,
033082
(
2019
).
66.
F.
Della Sala
,
E.
Fabiano
, and
L. A.
Constantin
,
Int. J. Quantum Chem.
116
,
1641
(
2016
).
67.
A.
Patra
,
S.
Jana
,
L. A.
Constantin
, and
P.
Samal
,
J. Chem. Phys.
153
,
084117
(
2020
).
68.
A.
Patra
,
S.
Jana
,
P.
Samal
,
F.
Tran
,
L.
Kalantari
,
J.
Doumont
, and
P.
Blaha
,
J. Phys. Chem. C
125
,
11206
(
2021
).
69.
F.
Tran
,
J.
Doumont
,
L.
Kalantari
,
P.
Blaha
,
T.
Rauch
,
P.
Borlido
,
S.
Botti
,
M. A. L.
Marques
,
A.
Patra
,
S.
Jana
, and
P.
Samal
,
J. Chem. Phys.
155
,
104103
(
2021
).
70.
71.
72.
A.
Schleife
,
F.
Fuchs
,
C.
Rödl
,
J.
Furthmüller
, and
F.
Bechstedt
,
Appl. Phys. Lett.
94
,
012104
(
2009
).
73.
W.
Mönch
,
J. Appl. Phys.
80
,
5076
(
1996
).
74.
Y.
Guo
and
J.
Robertson
,
Phys. Rev. Mater.
1
,
044004
(
2017
).
75.
Y.
Guo
,
H.
Li
,
S. J.
Clark
, and
J.
Robertson
,
J. Phys. Chem. C
123
,
5562
(
2019
).
76.
Y.
Hinuma
,
F.
Oba
,
Y.
Kumagai
, and
I.
Tanaka
,
Phys. Rev. B
88
,
035305
(
2013
).
77.
B.
Höffling
,
A.
Schleife
,
C.
Rödl
, and
F.
Bechstedt
,
Phys. Rev. B
85
,
035305
(
2012
).
78.
T.
Rauch
,
M. A. L.
Marques
, and
S.
Botti
,
J. Chem. Theory Comput.
16
,
2654
(
2020
).
79.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
,
226401
(
2009
).
80.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
81.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
124
,
221101
(
2006
).
82.
D.
Koller
,
F.
Tran
, and
P.
Blaha
,
Phys. Rev. B
85
,
155109
(
2012
).
83.
T.
Rauch
,
M. A. L.
Marques
, and
S.
Botti
,
Phys. Rev. B
102
,
119902
(
2020
).
84.
T.
Rauch
,
M. A. L.
Marques
, and
S.
Botti
,
J. Chem. Theory Comput.
17
,
4746
(
2021
).
85.
A. M.
Cowley
and
S. M.
Sze
,
J. Appl. Phys.
36
,
3212
(
1965
).
86.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. Lett.
59
,
144
(
1987
).
87.
A.
Patra
,
J. E.
Bates
,
J.
Sun
, and
J. P.
Perdew
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
E9188
(
2017
).
88.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
89.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
90.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
91.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
92.
J.
Sun
,
M.
Marsman
,
G. I.
Csonka
,
A.
Ruzsinszky
,
P.
Hao
,
Y.-S.
Kim
,
G.
Kresse
, and
J. P.
Perdew
,
Phys. Rev. B
84
,
035117
(
2011
).
93.
L. G.
Ferreira
,
M.
Marques
, and
L. K.
Teles
,
AIP Adv.
1
,
032119
(
2011
).
94.
J.
Doumont
,
F.
Tran
, and
P.
Blaha
,
Phys. Rev. B
99
,
115101
(
2019
).
95.
P.
Borlido
,
T.
Aull
,
A. W.
Huran
,
F.
Tran
,
M. A. L.
Marques
, and
S.
Botti
,
J. Chem. Theory Comput.
15
,
5069
(
2019
).
96.
T.
Rauch
,
M. A. L.
Marques
, and
S.
Botti
,
Phys. Rev. B
101
,
245163
2020
.

Supplementary Material

You do not currently have access to this content.