Methods for correcting residual energy errors of configuration interaction (CI) calculations of molecules and other electronic systems are discussed based on the assumption that the energy defect can be mapped onto atomic regions. The methods do not consider the detailed nature of excitations but instead define a defect energy per electron that is unique to a specific atom. Defect energy contributions are determined from calculations on diatomic and hydride molecules and then applied to other systems. Calculated energies are compared with experimental thermodynamic and spectroscopic data for a set of 41 mainly organic molecules representing a wide range of bonding environments. The most stringent test is based on a severely truncated virtual space in which higher spherical harmonic basis functions are removed. The errors of the initial CI calculations are large, but in each case, including defect corrections brings calculated CI energies into agreement with experimental values. The method is also applied to a NIST compilation of coupled cluster calculations that employ a larger basis set and no truncation of the virtual space. The corrections show excellent consistency with total energies in very good agreement with experimental values. An extension of the method is applied to dmsn states of Sc, Ti, V, Mn, Cr, Fe, Co, Ni, and Cu, significantly improving the agreement of calculated transition energies with spectroscopic values.

1.
I.
Shavitt
and
R. J.
Bartlett
,
Many-body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
), ISBN: 978-0-521-81832-2.
2.
NIST Computational Chemistry Comparison and Benchmark Database
,
NIST Standard Reference Database Number 101
, edited by
R. D.
Johnson
III
,
2020
, http://cccbdb.nist.gov/.
A.
Kramida
,
R.
Yu
,
J.
Reader
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.9), [5 May 2022],
2022
, https://physics.nist.gov/asd,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
3.
A.
Pipano
and
I.
Shavitt
,
Int. J. Quantum Chern.
2
,
741
(
1968
);
Z.
Gershgorn
and
I.
Shavitt
,
Int. J. Quantum Chern.
2
,
751
(
1968
).
4.
W.
Kutzelnigg
and
P.
von Herigonte
, “
Electron correlation at the dawn of the 21st century
,”
Adv. Quantum Chem.
36
,
185
229
(
2000
).
5.
J. L.
Whitten
,
J. Chem. Phys.
153
,
244103
(
2020
).
6.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
7.
J.
Paldus
, “
The beginnings of coupled-cluster theory: An eyewitness account
,” in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C.
Dykstra
(
Elsevier B.V
,
2005
), p.
115
.
8.
S. J.
Bennie
,
M. W.
Van der Kamp
,
R. C. R.
Pennifold
,
M.
Stella
,
F. R.
Manby
, and
A. J.
Mulholland
,
J. Chem. Theory Comput.
12
,
2689
(
2016
).
9.
J. L.
Whitten
and
M.
Hackmeyer
,
J. Chem. Phys.
51
,
5584
(
1969
);
B. N.
Papas
and
J. L.
Whitten
,
J. Chem. Phys.
135
,
204701
(
2011
).
[PubMed]
10.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
).
11.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
,
Chem. Phys.
75
,
91
(
1983
).
12.
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
064108
(
2005
);
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
122
,
034109
(
2005
).
13.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
73
,
2342
(
1980
).
14.
P.
Pulay
,
S.
Saebo
, and
W.
Meyer
,
J. Chem. Phys.
81
,
1901
1905
(
1984
).
15.
S.
Saebo
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
);
S.
Saebo/
and
P.
Pulay
,
Fourth-order Møller–Plesset perturbation theory in the local correlation treatment. I. Theory
,”
J. Chem. Phys.
86
,
914
(
1987
);
S.
Saebo
and
P.
Pulay
,
Fourth-order Møller–Plesset perturbation theory in the local correlation treatment. II. Results
,”
J. Chem. Phys.
88
,
1884
(
1988
).
16.
S.
Saebo
and
P.
Pulay
, “
A low-scaling method for second order Møller–Plesset calculations
,”
J. Chem. Phys.
115
,
3975
(
2001
).
17.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
WIREs Computational Molecular Science
(
John Wiley & Sons, Ltd.
,
2013
).
18.
P.
Pulay
,
Chem. Phys. Lett.
100
,
151
(
1983
).
19.
R. A.
Friesner
,
R. B.
Murphy
,
M. D.
Beachy
,
M. N.
Ringnalda
,
W. T.
Pollard
,
B. D.
Dunietz
, and
Y.
Cao
,
J. Phys. Chem. A
103
,
1913
(
1999
).
20.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
21.
For early work on electron correlation functionals for molecules see:
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1288
(
1974
);
E.
Clementi
and
S. J.
Chakravorty
,
J. Chem. Phys.
93
,
2591
(
1990
).
22.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
23.
J. E.
Deustua
,
I.
Magoulas
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
149
,
151101
(
2018
);
[PubMed]
J. E.
Deustua
,
S. H.
Yuwono
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
150
,
111101
(
2019
).
[PubMed]
24.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
,
J. F.
Stanton
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
25.
C.
Song
and
T. J.
Martínez
,
J. Chem. Phys.
152
,
234113
(
2020
);
[PubMed]
B. S.
Fales
and
T. J.
Martinez
,
J. Chem. Phys.
152
,
164111
(
2020
).
[PubMed]
26.
B. S.
Fales
and
T. J.
Martínez
,
J. Chem. Theory Comput.
16
(
3
),
1586
1596
(
2020
).
27.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
28.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
29.
R. K.
Kathir
,
C.
de Graaf
,
R.
Broer
, and
R. W. A.
Havenith
,
J. Chem. Theory Comput.
16
,
2941
(
2020
).
30.
J. L.
Whitten
,
J. Chem. Phys.
146
,
064113
(
2017
).
31.
J. L.
Whitten
,
Phys. Chem. Chem. Phys.
21
,
21541
(
2019
).
32.
C.
Edmiston
and
K.
Ruedenberg
,
Rev. Mod. Phys.
35
,
457
(
1963
).
33.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
34.
J. L.
Whitten
and
H.
Yang
,
Int. J. Quantum Chem., Quantum Chem. Symp.
56
,
41
47
(
1995
).
35.
S.
Lehtola
and
H.
Jónsson
,
J. Chem. Theory Comput.
9
,
5365
5372
(
2013
).
36.
I.-M.
Høyvik
,
B.
Jansik
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
8
,
3137
(
2012
).
37.
See for example
J. L.
Whitten
and
H.
Yang
,
Surf. Sci. Rep.
24
,
55
124
(
1996
);
B. N.
Papas
and
J. L.
Whitten
,
Int. J. Quantum Chem.
110
,
3072
3079
(
2010
) and references contained therein.
38.
A.
Alturn
,
R.
Izsak
, and
G.
Bistoni
,
Int. J. Quantum Chem.
(
2020
),
e26339
, available at httos://onlinelibrary.wiley.com/doi:10,1002/qua.26339.
39.
Y.
Guo
,
W.
Li
, and
S.
Li
,
J. Phys. Chem. A
118
,
8996
(
2014
).
40.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
41.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
42.
J. A.
Jafri
and
J. L.
Whitten
,
J. Chem. Phys.
61
,
2116
(
1974
);
T. A.
Pakkanen
and
J. L.
Whitten
,
J. Chem. Phys.
69
,
2168
(
1978
).
43.
H.-J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
44.
N.
Frank
,
W.
Frank
,
U.
Becker
, and
C.
Riplingr
,
J. Chem. Phys.
152
,
224108
(
2020
).
45.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
46.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).

Supplementary Material

You do not currently have access to this content.