The use of metal composites based on plasmonic nanostructures partnered with catalytic counterparts has recently emerged as a promising approach in the field of plasmon-enhanced electrocatalysis. Here, we report on the role of the surface morphology, size, and anchored site of Pd catalysts coupled to plasmonic metasurfaces formed by periodic arrays of multimetallic Ni/Au nanopillars for formic acid electro-oxidation reaction (FAOR). We compare the activity of two kinds of metasurfaces differing in the positioning of the catalytic Pd nanoparticles. In the first case, the Pd nanoparticles have a polyhedron crystal morphology with exposed (200) facets and were deposited over the Ni/Au metasurfaces in a site-selective fashion by limiting their growth at the electromagnetic hot spots (Ni/Au–Pd@W). In contrast, the second case consists of spherical Pd nanoparticles grown in solution, which are homogeneously deposited onto the Ni/Au metasurface (Ni/Au–Pd@M). Ni/Au–Pd@W catalytic metasurfaces demonstrated higher light-enhanced FAOR activity (61%) in comparison to the Ni/Au–Pd@M sample (42%) for the direct dehydrogenation pathway. Moreover, the site-selective Pd deposition promotes the growth of nanoparticles favoring a more selective catalytic behavior and a lower degree of CO poisoning on Pd surface. The use of cyclic voltammetry, energy-resolved incident photon to current conversion efficiency, open circuit potential, and electrochemical impedance spectroscopy highlights the role of plasmonic near fields and hot holes in driving the catalytic enhancement under light conditions.

1.
L.
Schlapbach
and
A.
Züttel
,
Nature
414
,
353
(
2001
).
2.
U. B.
Demirci
,
J. Power Sources
169
,
239
(
2007
).
3.
C.
Rettenmaier
,
R. M.
Arán-Ais
,
J.
Timoshenko
,
R.
Rizo
,
H. S.
Jeon
,
S.
Kühl
,
S. W.
Chee
,
A.
Bergmann
, and
B.
Roldan Cuenya
,
ACS Catal.
10
,
14540
(
2020
).
4.
J.
Eppinger
and
K.-W.
Huang
,
ACS Energy Lett.
2
,
188
(
2017
).
5.
X.
Yu
and
P. G.
Pickup
,
J. Power Sources
182
,
124
(
2008
).
6.
K.
Sordakis
,
C.
Tang
,
L. K.
Vogt
,
H.
Junge
,
P. J.
Dyson
,
M.
Beller
, and
G.
Laurenczy
,
Chem. Rev.
118
,
372
(
2018
).
7.
M.
Grasemann
and
G.
Laurenczy
,
Energy Environ. Sci.
5
,
8171
(
2012
).
8.
V.
Grozovski
,
V.
Climent
,
E.
Herrero
, and
J. M.
Feliu
,
ChemPhysChem
10
,
1922
(
2009
).
9.
A.
Cuesta
,
G.
Cabello
,
M.
Osawa
, and
C.
Gutiérrez
,
ACS Catal.
2
,
728
(
2012
).
10.
H.
Lee
,
Y.
Sohn
, and
C. K.
Rhee
,
Langmuir
36
,
5359
(
2020
).
11.
X.
Qin
,
H.
Li
,
S.
Xie
,
K.
Li
,
T.
Jiang
,
X.-Y.
Ma
,
K.
Jiang
,
Q.
Zhang
,
O.
Terasaki
,
Z.
Wu
, and
W.-B.
Cai
,
ACS Catal.
10
,
3921
(
2020
).
12.
A. O.
Elnabawy
,
J. A.
Herron
,
Z.
Liang
,
R. R.
Adzic
, and
M.
Mavrikakis
,
ACS Catal.
11
,
5294
(
2021
).
13.
K.
Jiang
,
H.-X.
Zhang
,
S.
Zou
, and
W.-B.
Cai
,
Phys. Chem. Chem. Phys.
16
,
20360
(
2014
).
14.
Y.
Zhu
,
Z.
Khan
, and
R. I.
Masel
,
J. Power Sources
139
,
15
(
2005
).
15.
C. H.
Choi
,
K.
Chung
,
T.-T. H.
Nguyen
, and
D. H.
Kim
,
ACS Energy Lett.
3
,
1415
(
2018
).
16.
S.
Lee
,
Y.
Wy
,
Y. W.
Lee
,
K.
Ham
, and
S. W.
Han
,
Small
13
,
1701633
(
2017
).
17.
S.
Deng
,
B.
Zhang
,
P.
Choo
,
P. J. M.
Smeets
, and
T. W.
Odom
,
Nano Lett.
21
,
1523
(
2021
).
18.
S.
Ezendam
,
M.
Herran
,
L.
Nan
,
C.
Gruber
,
Y.
Kang
,
F.
Gröbmeyer
,
R.
Lin
,
J.
Gargiulo
,
A.
Sousa-Castillo
, and
E.
Cortés
,
ACS Energy Lett.
7
,
778
(
2022
).
19.
Y.
Zhang
,
S.
He
,
W.
Guo
,
Y.
Hu
,
J.
Huang
,
J. R.
Mulcahy
, and
W. D.
Wei
,
Chem. Rev.
118
,
2927
(
2018
).
20.
C. L.
Warkentin
,
Z.
Yu
,
A.
Sarkar
, and
R. R.
Frontiera
,
Acc. Chem. Res.
54
,
2457
(
2021
).
21.
K.
Li
,
N. J.
Hogan
,
M. J.
Kale
,
N. J.
Halas
,
P.
Nordlander
, and
P.
Christopher
,
Nano Lett.
17
,
3710
(
2017
).
22.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer US
,
New York, NY
,
2007
).
23.
A.
Naldoni
,
V. M.
Shalaev
, and
M. L.
Brongersma
,
Science
356
,
908
(
2017
).
24.
L.
Mascaretti
and
A.
Naldoni
,
J. Appl. Phys.
128
,
041101
(
2020
).
25.
A.
Naldoni
,
Z. A.
Kudyshev
,
L.
Mascaretti
,
S. P.
Sarmah
,
S.
Rej
,
J. P.
Froning
,
O.
Tomanec
,
J. E.
Yoo
,
D.
Wang
,
Š.
Kment
,
T.
Montini
,
P.
Fornasiero
,
V. M.
Shalaev
,
P.
Schmuki
,
A.
Boltasseva
, and
R.
Zbořil
,
Nano Lett.
20
,
3663
(
2020
).
26.
E.
Cortés
,
L. V.
Besteiro
,
A.
Alabastri
,
A.
Baldi
,
G.
Tagliabue
,
A.
Demetriadou
, and
P.
Narang
,
ACS Nano
14
,
16202
(
2020
).
27.
S.
Rej
,
L.
Mascaretti
,
E. Y.
Santiago
,
O.
Tomanec
,
Š.
Kment
,
Z.
Wang
,
R.
Zbořil
,
P.
Fornasiero
,
A. O.
Govorov
, and
A.
Naldoni
,
ACS Catal.
10
,
5261
(
2020
).
28.
G.
Tagliabue
,
J. S.
DuChene
,
A.
Habib
,
R.
Sundararaman
, and
H. A.
Atwater
,
ACS Nano
14
,
5788
(
2020
).
29.
A.
Sousa-Castillo
,
M.
Comesaña-Hermo
,
B.
Rodríguez-González
,
M.
Pérez-Lorenzo
,
Z.
Wang
,
X.-T.
Kong
,
A. O.
Govorov
, and
M. A.
Correa-Duarte
,
J. Phys. Chem. C
120
,
11690
(
2016
).
30.
J. S.
DuChene
,
G.
Tagliabue
,
A. J.
Welch
,
X.
Li
,
W.-H.
Cheng
, and
H. A.
Atwater
,
Nano Lett.
20
,
2348
(
2020
).
31.
L. V.
Besteiro
,
A.
Movsesyan
,
O.
Ávalos-Ovando
,
S.
Lee
,
E.
Cortés
,
M. A.
Correa-Duarte
,
Z. M.
Wang
, and
A. O.
Govorov
,
Nano Lett.
21
,
10315
(
2021
).
32.
E.
Pensa
,
J.
Gargiulo
,
A.
Lauri
,
S.
Schlücker
,
E.
Cortés
, and
S. A.
Maier
,
Nano Lett.
19
,
1867
(
2019
).
33.
Z.
Zheng
,
T.
Tachikawa
, and
T.
Majima
,
J. Am. Chem. Soc.
137
,
948
(
2015
).
34.
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
,
Science
339
,
1232009
(
2013
).
35.
A. S.
Solntsev
,
G. S.
Agarwal
, and
Y. S.
Kivshar
,
Nat. Photonics
15
,
327
(
2021
).
36.
Y.
Wang
,
P.
Landreman
,
D.
Schoen
,
K.
Okabe
,
A.
Marshall
,
U.
Celano
,
H.-S. P.
Wong
,
J.
Park
, and
M. L.
Brongersma
,
Nat. Nanotechnol.
16
,
667
(
2021
).
37.
A. D.
Humphrey
and
W. L.
Barnes
,
Phys. Rev. B
90
,
075404
(
2014
).
38.
R.
Yalavarthi
,
O.
Yesilyurt
,
O.
Henrotte
,
Š.
Kment
,
V. M.
Shalaev
,
A.
Boltasseva
, and
A.
Naldoni
,
Laser Photonics Rev.
16
,
2200137
(
2022
).
39.
L.
Mascaretti
,
A.
Schirato
,
P.
Fornasiero
,
A.
Boltasseva
,
V. M.
Shalaev
,
A.
Alabastri
, and
A.
Naldoni
,
Nanophotonics
11
,
3035
(
2022
).
40.
R.
Yalavarthi
,
L.
Mascaretti
,
Z. A.
Kudyshev
,
A.
Dutta
,
S.
Kalytchuk
,
R.
Zbořil
,
P.
Schmuki
,
V. M.
Shalaev
,
Š.
Kment
,
A.
Boltasseva
, and
A.
Naldoni
,
ACS Appl. Energy Mater.
4
,
11367
(
2021
).
41.
G. A. B.
Mello
,
C.
Busó-Rogero
,
E.
Herrero
, and
J. M.
Feliu
,
J. Chem. Phys.
150
,
041703
(
2019
).
42.
R.
Iyyamperumal
,
L.
Zhang
,
G.
Henkelman
, and
R. M.
Crooks
,
J. Am. Chem. Soc.
135
,
5521
(
2013
).
43.
D. F.
Swearer
,
H.
Zhao
,
L.
Zhou
,
C.
Zhang
,
H.
Robatjazi
,
J. M. P.
Martirez
,
C. M.
Krauter
,
S.
Yazdi
,
M. J.
McClain
,
E.
Ringe
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
8916
(
2016
).
44.
A.
Capon
and
R.
Parson
,
J. Electroanal. Chem. Interfacial Electrochem.
44
,
1
(
1973
).
45.
J.
Joo
,
T.
Uchida
,
A.
Cuesta
,
M. T. M.
Koper
, and
M.
Osawa
,
Electrochim. Acta
129
,
127
(
2014
).
46.
G.
Samjeské
,
A.
Miki
,
S.
Ye
, and
M.
Osawa
,
J. Phys. Chem. B
110
,
16559
(
2006
).
47.
J.
Scaranto
and
M.
Mavrikakis
,
Surf. Sci.
650
,
111
(
2016
).
48.
W. J.
Lee
,
Y. J.
Hwang
,
J.
Kim
,
H.
Jeong
, and
C. W.
Yoon
,
ChemPhysChem
20
,
1382
(
2019
).
49.
D. N.
Denzler
,
C.
Frischkorn
,
C.
Hess
,
M.
Wolf
, and
G.
Ertl
,
Phys. Rev. Lett.
91
,
226102
(
2003
).
50.
A.
Marimuthu
,
J.
Zhang
, and
S.
Linic
,
Science
339
,
1590
(
2013
).
51.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
(
2011
).
52.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
, and
H. A.
Atwater
,
ACS Nano
10
,
957
(
2016
).
53.
A. J.
Wilson
and
P. K.
Jain
,
Acc. Chem. Res.
53
,
1773
(
2020
).
54.
W.
Chen
,
J.
Kim
,
S.
Sun
, and
S.
Chen
,
Phys. Chem. Chem. Phys.
8
,
2779
(
2006
).
55.
Z.-B.
Wang
,
Y.-Y.
Chu
,
A.-F.
Shao
,
P.-J.
Zuo
, and
G.-P.
Yin
,
J. Power Sources
190
,
336
(
2009
).

Supplementary Material

You do not currently have access to this content.