Freezing impinged water droplets on glass surfaces cause serious problems such as reduced visibility of traffic lights and surveillance cameras. Droplets in the air associated with these issues are often at subzero temperatures. However, experimental results on the freezing of precooled impinged droplets are limited. In this study, we measured the freezing of precooled and impinged water droplets on cold glass surfaces. Two types of lattice-patterned microscale grooves were formed on glass surfaces to reduce the contact area of droplets and growth of frosts, which contributed to droplet freezing. In addition, the surfaces were coated with a silane coupling agent to further reduce the contact area. We analyzed the images of droplets captured using a high-speed video camera. The results of the linear relationships between the frozen droplet height, freezing front velocity, and freezing time (for the impinged droplets) indicated that the grooves and coating were effective in retarding the freezing of impinged droplets. This retardation was more evident for frost-free glass surfaces, and it was less evident for precooled droplets. Moreover, a simple heat transfer analysis was conducted to effectively estimate the overall heat flux and freezing front velocity. The sublimation of frost (adjacent to the impinged droplets) and supercool elimination of the precooled droplets significantly contributed to the heat flux and caused an increase in the freezing front velocity.

1.
G.
Chaudhary
and
R.
Li
, “
Freezing of water droplets on solid surfaces: An experimental and numerical study
,”
Exp. Therm. Fluid Sci.
57
,
86
97
(
2014
).
2.
L.
Huang
,
Z.
Liu
,
Y.
Liu
,
Y.
Gou
, and
L.
Wang
, “
Effect of contact angle on water droplet freezing process on a cold flat surface
,”
Exp. Therm. Fluid Sci.
40
,
74
80
(
2012
).
3.
Y.
Shen
,
J.
Tao
,
H.
Tao
,
S.
Chen
,
L.
Pan
, and
T.
Wang
, “
Anti-icing potential of superhydrophobic Ti6Al4V surfaces: Ice nucleation and growth
,”
Langmuir
31
,
10799
10806
(
2015
).
4.
P.
Hao
,
C.
Lv
, and
X.
Zhang
, “
Freezing of sessile water droplets on surfaces with various roughness and wettability
,”
Appl. Phys. Lett.
104
,
161609
(
2014
).
5.
H.
Zhang
,
Y.
Zhao
,
R.
Lv
, and
C.
Yang
, “
Freezing of sessile water droplet for various contact angles
,”
Int. J. Therm. Sci.
101
,
59
67
(
2016
).
6.
Y.
Yamada
,
G.
Onishi
, and
A.
Horibe
, “
Sessile droplet freezing on hydrophobic structured surfaces under cold ambient conditions
,”
Langmuir
35
,
16401
16406
(
2019
).
7.
P.
Tourkine
,
M.
Le Merrer
, and
D.
Quéré
, “
Delayed freezing on water repellent materials
,”
Langmuir
25
,
7214
7216
(
2009
).
8.
S.
Nath
,
S. F.
Ahmadi
, and
J. B.
Boreyko
, “
A review of condensation frosting
,”
Nanoscale Microscale Thermophys. Eng.
21
,
81
101
(
2017
).
9.
S.
Yonezawa
,
H.
Agui
,
H.
Ohkubo
, and
Y.
Hagiwara
, “
Suppression of frost layer growth on glass or copper surfaces with micro-scale lattice-patterned grooves
,”
Int. J. Refrig.
106
,
33
40
(
2019
).
10.
L.
Oberli
,
D.
Caruso
,
C.
Hall
,
M.
Fabretto
,
P. J.
Murphy
, and
D.
Evans
, “
Condensation and freezing of droplets on superhydrophobic surfaces
,”
Adv. Colloid Interface Sci.
210
,
47
57
(
2014
).
11.
K.
Koshio
,
K.
Arai
,
T.
Waku
,
P. W.
Wilson
, and
Y.
Hagiwara
, “
Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent
,”
PLoS One
13
,
e0204686
(
2018
).
12.
P.
Kim
,
T.-S.
Wong
,
J.
Alvarenga
,
M. J.
Kreder
,
W. E.
Adorno-Martinez
, and
J.
Aizenberg
, “
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance
,”
ACS Nano
6
,
6569
6577
(
2012
).
13.
Z.
Liu
,
Y.
Gou
,
J.
Wang
, and
S.
Cheng
, “
Frost formation on a super-hydrophobic surface under natural convection conditions
,”
Int. J. Heat Mass Transfer
51
,
5975
5982
(
2008
).
14.
M.
He
,
J.
Wang
,
H.
Li
, and
Y.
Song
, “
Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation
,”
Soft Matter
7
,
3993
4000
(
2011
).
15.
G.
Heydari
,
E.
Thormann
,
M.
Järn
,
E.
Tyrode
, and
P. M.
Claesson
, “
Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay
,”
J. Phys. Chem. C
117
,
21752
21762
(
2013
).
16.
K.
Rykaczewski
,
S.
Anand
,
S. B.
Subramanyam
, and
K. K.
Varanasi
, “
Mechanism of frost formation on lubricant-impregnated surfaces
,”
Langmuir
29
,
5230
5238
(
2013
).
17.
X.
Chen
,
R.
Ma
,
H.
Zhou
,
X.
Zhou
,
L.
Che
,
S.
Yao
, and
Z.
Wang
, “
Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion
,”
Sci. Rep.
3
,
2515
(
2015
).
18.
S. F.
Ahmadi
,
S.
Nath
,
G. J.
Iliff
,
B. R.
Srijanto
,
C. P.
Collier
,
P.
Yue
, and
J. B.
Boreyko
, “
Passive antifrosting surfaces using microscopic ice patterns
,”
ACS Appl. Mater. Interfaces
10
,
32874
32884
(
2018
).
19.
A.
Alizadeh
,
M.
Yamada
,
R.
Li
,
W.
Shang
,
S.
Otta
,
S.
Zhong
,
L.
Ge
,
A.
Dhinojwala
,
K. R.
Conway
,
V.
Bahadur
 et al, “
Dynamics of ice nucleation on water repellent surfaces
,”
Langmuir
28
,
3180
3186
(
2012
).
20.
Y.
Wang
,
J.
Xue
,
Q.
Wang
,
Q.
Chen
, and
J.
Ding
, “
Verification of icephobic/anti-icing properties of a superhydrophobic surface
,”
ACS Appl. Mater. Interfaces
5
,
3370
3381
(
2013
).
21.
T.
Maitra
,
C.
Antonini
,
M. K.
Tiwari
,
A.
Mularczyk
,
Z.
Imeri
,
P.
Schoch
, and
D.
Poulikakos
, “
Supercooled water drops impacting superhydrophobic textures
,”
Langmuir
30
,
10855
10861
(
2014
).
22.
Y.
Hagiwara
,
S.
Ishikawa
,
R.
Kimura
, and
K.
Toyohara
, “
Ice growth and interface oscillation of water droplets impinged on a cooling surface
,”
J. Cryst. Growth
468
,
46
53
(
2017
).
23.
Z.
Jin
,
H.
Zhang
, and
Z.
Yang
, “
Experimental investigation of the impact and freezing processes of a water droplet on an ice surface
,”
Int. J. Heat Mass Transfer
109
,
716
724
(
2017
).
24.
T.
Lizer
,
M.
Remer
,
G.
Sobieraj
,
M.
Psarski
,
D.
Pawlak
, and
G.
Celichowski
, “
Droplet impact in icing conditions—Experimental study for WE 540
,”
Arch. Mech. Eng.
64
,
165
175
(
2017
).
25.
Y.
Yao
,
C.
Li
,
Z.
Tao
,
R.
Yang
, and
H.
Zhang
, “
Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface
,”
Appl. Therm. Eng.
137
,
83
92
(
2018
).
26.
H.
Zhang
,
Z.
Jin
,
M.
Jiao
, and
Z.
Yang
, “
Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces
,”
Int. J. Therm. Sci.
132
,
498
508
(
2018
).
27.
R.
Zhang
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature
,”
Int. J. Heat Mass Transfer
122
,
395
402
(
2018
).
28.
B.
Ding
,
H.
Wang
,
X.
Zhu
,
R.
Chen
, and
Q.
Liao
, “
Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees
,”
Int. J. Heat Mass Transfer
138
,
844
851
(
2019
).
29.
L.
Wang
,
W.
Kong
,
F.
Wang
, and
H.
Liu
, “
Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate
,”
Int. J. Heat Mass Transfer
130
,
831
842
(
2019
).
30.
X.
Zhang
,
X.
Liu
,
X.
Wu
, and
J.
Min
, “
Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion
,”
Int. J. Heat Mass Transfer
158
,
119997
(
2020
).
31.
W.-Z.
Fang
,
F.
Zhu
,
W.-Q.
Tao
, and
C.
Yang
, “
How different freezing morphologies of impacting droplets form
,”
J. Colloid Interface Sci.
584
,
403
410
(
2021
).
32.
M.
Yamaji
,
H. G.
Takahashi
,
T.
Kubota
,
R.
Oki
,
A.
Hamada
, and
Y. N.
Takayabu
, “
4-year climatology of global drop size distribution and its seasonal variability observed by spaceborne dual-frequency precipitation radar
,”
J. Meteorol. Soc. Jpn.
98
,
755
773
(
2020
).
33.
S.
Schiaffino
and
A. A.
Sonin
, “
Molten droplet deposition and solidification at low Weber numbers
,”
Phys. Fluids
9
,
3172
3187
(
1997
).
34.
C.
Antonini
,
F.
Villa
, and
M.
Marengo
, “
Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: Outcomes, timing, and rebound map
,”
Exp. Fluids
55
,
1713
(
2014
).
35.
Y.-Y.
Quan
,
L.-Z.
Zhang
,
R.-H.
Qi
, and
R.-R.
Cai
, “
Self-cleaning of surfaces: The role of surface wettability and dust types
,”
Sci. Rep.
6
,
38239
(
2016
).
36.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
,
7699
7707
(
2010
).
37.
K.
Kasahara
,
T.
Waku
,
P. W.
Wilson
,
T.
Tonooka
, and
Y.
Hagiwara
, “
The inhibition of icing and frosting on glass surfaces by the coating of polyethylene glycol and polypeptide mimicking antifreeze protein
,”
Biomolecules
10
,
259
(
2020
).
38.
K.
Koshio
,
T.
Waku
, and
Y.
Hagiwara
, “
Ice-phobic glass-substrate surfaces coated with polypeptides inspired by antifreeze protein
,”
Int. J. Refrig.
114
,
201
209
(
2020
).
39.
A. K.
Chauhan
,
D. K.
Aswal
,
S. P.
Koiry
,
S. K.
Gupta
,
J. V.
Yakhmi
,
C.
Sürgers
,
D.
Guerin
,
S.
Lenfant
, and
D.
Vuillaume
, “
Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics
,”
Appl. Phys. A
90
,
581
589
(
2008
).
40.
H.
Mishra
,
A. M.
Schrader
,
D. W.
Lee
,
A.
Gallo
,
S.-Y.
Chen
,
Y.
Kaufman
,
S.
Das
, and
J. N.
Israelachvili
, “
Time-dependent wetting behavior of PDMS surfaces with bio-inspired, hierarchical structures
,”
ACS Appl. Mater. Interfaces
8
,
8168
8174
(
2016
).
41.
B.
Bhushan
and
M.
Nosonovsky
, “
The rose petal effect and the modes of superhydrophobicity
,”
Philos. Trans. R. Soc., A
368
,
4713
4728
(
2010
).
42.
W.
Gong
,
Y.
Zu
,
S.
Chen
, and
Y.
Yan
, “
Wetting transition energy curves for a droplet on a square-post patterned surface
,”
Sci. Bull.
62
,
136
142
(
2017
).
43.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
44.
K.
Ogawa
,
M.
Soga
,
Y.
Takada
, and
I.
Nakayama
, “
Development of a transparent and ultrahydrophobic glass plate
,”
Jpn. J. Appl. Phys.
32
,
L614
L615
(
1993
).
45.
Y.
Liu
, “
Research on a superhydrophobic coating of highly transparent wear-resistant inorganic/organic silicon composite resin
,”
Coatings
11
,
338
(
2021
).
46.
S.
Ishikawa
, “
Evaluation of cooling functional surfaces by measuring the freezing behavior of impinging water droplets
,” M.S. thesis (in Japanese),
Kyoto Institute of Technology
,
2018
.
47.
Y.
Yonemoto
and
T.
Kunugi
, “
Analytical consideration of liquid droplet impingement on solid surfaces
,”
Sci. Rep.
7
,
2362
(
2017
).
48.
A.
Dehaoui
,
B.
Issenmann
, and
F.
Caupin
, “
Viscosity of deeply supercooled water and its coupling to molecular diffusion
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12020
12025
(
2015
).
49.
J.
Kestin
,
M.
Sokolov
, and
W. A.
Wakeham
, “
Viscosity of liquid water in the range −8 to 150 °C
,”
J. Phys. Chem. Ref. Data
7
,
941
948
(
1978
).
50.
P. T.
Hacker
, “
Experimental values of the surface tension of supercooled water
,” Technical Note 2510, National Advisory Committee for Aeronautics,
1951
.
51.
D. M.
Anderson
,
M. G.
Worster
, and
S. H.
Davis
, “
The case for a dynamic contact angle in containerless solidification
,”
J. Cryst. Growth
163
,
329
338
(
1996
).
52.
C.
Antonini
,
F.
Villa
,
I.
Bernagozzi
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop rebound after impact: The role of the receding contact angle
,”
Langmuir
29
,
16045
16050
(
2013
).

Supplementary Material

You do not currently have access to this content.