Structure, stability, charge transfer, chemical bonding, and spectroscopic properties of Ga atom-doped neutral Mgn (n = 2–12) clusters have been systematically investigated by CALYPSO and density functional theory. All cluster structures are based on “tetrahedral” and “yurt-like” growth except for GaMg2. The ground state isomer of GaMg8 with high symmetry structure is predicted to be the best-fit candidate for the “magic” cluster because of its excellent stability. Natural bond orbital calculations reveal that Ga and Mg atoms play the role of electron acceptor and donor in all ground state isomers, while the orbitals in both Ga and Mg are sp-hybridized. Most importantly, chemical bonding studies based on atom-in-molecular theory have shown that the lowest-energy state of GaMg4 is so special, in that it has not only the critical size for the appearance of Mg–Mg covalent bonds, but also the only cluster that has both Ga–Mg covalent and non-covalent bonds. Finally, theoretical calculations of IR and Raman spectra of all ground state isomers indicate that the spectra of these clusters are observable in the low-frequency band, and thus they can be identified by spectroscopic experiments. Furthermore, the bond heterogeneity of the Ga–Mg in the GaMg4 ground state isomer has also been specifically investigated, including the fixed GaMg4 structure with Mg atoms added in different directions, as well as ab initio molecular dynamics sampling at different temperatures.

1.
A. W.
Castleman
and
K. H.
Bowen
, “
Clusters: Structure, energetics, and dynamics of intermediate states of matter
,”
J. Phys. Chem.
100
,
12911
12944
(
1996
).
2.
R.
Jin
,
C.
Zeng
,
M.
Zhou
, and
Y.
Chen
, “
Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities
,”
Chem. Rev.
116
,
10346
10413
(
2016
).
3.
D.
Ni
,
W.
Bu
,
E. B.
Ehlerding
,
W.
Cai
, and
J.
Shi
, “
Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents
,”
Chem. Soc. Rev.
46
,
7438
7468
(
2017
).
4.
L.
Zhang
,
S.
Jin
,
M.
Ren
,
C.
Lu
,
F.
Peng
, and
G. L.
Gutsev
, “
Structural evolution and hydrogen storage performance of Mg3LaHn (n = 9–20)
,”
Int. J. Hydrogen Energy
47
,
7884
7891
(
2022
).
5.
H.
Chen
,
H.
Liang
,
W.
Dai
,
C.
Lu
,
K.
Ding
,
J.
Bi
, and
B.
Zhu
, “
MgScH15: A highly stable cluster for hydrogen storage
,”
Int. J. Hydrogen Energy
45
,
32260
32268
(
2020
).
6.
X.
Ma
,
S.
Liu
, and
S.
Huang
, “
Hydrogen adsorption and dissociation on the TM-doped (TM = Ti, Nb) Mg55 nanoclusters: A DFT study
,”
Int. J. Hydrogen Energy
42
,
24797
24810
(
2017
).
7.
R.
Trivedi
and
D.
Bandyopadhyay
, “
Study of adsorption and dissociation pathway of H2 molecule on MgnRh (n = 1–10) clusters: A first principle investigation
,”
Int. J. Hydrogen Energy
41
,
20113
20121
(
2016
).
8.
W.
Silva
,
T. N.
Truong
, and
F.
Mondragon
, “
Electronic characterization and reactivity of bimetallic clusters of the TiMgn type for hydrogen storage applications
,”
J. Alloys Compd.
509
,
8501
8509
(
2011
).
9.
R. W. P.
Wagemans
,
J. H.
van Lenthe
,
P. E.
de Jongh
,
A. J.
Van Dillen
, and
K. P.
de Jong
, “
Hydrogen storage in magnesium clusters: Quantum chemical study
,”
J. Am. Chem. Soc.
127
,
16675
16680
(
2005
).
10.
Q.
Yao
,
T.
Chen
,
X.
Yuan
, and
J.
Xie
, “
Toward total synthesis of thiolate-protected metal nanoclusters
,”
Acc. Chem. Res.
51
,
1338
1348
(
2018
).
11.
M.
Wang
,
L.-Y.
Chu
,
Z.-Y.
Li
,
A. M.
Messinis
,
Y.-Q.
Ding
,
L.
Hu
, and
J.-B.
Ma
, “
Dinitrogen and carbon dioxide activation to form C–N bonds at room temperature: A new mechanism revealed by experimental and theoretical studies
,”
J. Phys. Chem. Lett.
12
,
3490
3496
(
2021
).
12.
I.
Chakraborty
and
T.
Pradeep
, “
Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles
,”
Chem. Rev.
117
,
8208
8271
(
2017
).
13.
J.
Zhang
and
M.
Dolg
, “
ABCluster: The artificial bee colony algorithm for cluster global optimization
,”
Phys. Chem. Chem. Phys.
17
,
24173
24181
(
2015
).
14.
J.
Zhang
and
M.
Dolg
, “
Global optimization of clusters of rigid molecules using the artificial bee colony algorithm
,”
Phys. Chem. Chem. Phys.
18
,
3003
3010
(
2016
).
15.
J.
Zhang
and
V.-A.
Glezakou
, “
Global optimization of chemical cluster structures: Methods, applications, and challenges
,”
Int. J. Quantum Chem.
121
,
e26553
(
2021
).
16.
Y.
Zhao
,
Y.
Xu
,
P.
Chen
,
Y.
Yuan
,
Y.
Qian
, and
Q.
Li
, “
Structural and electronic properties of medium-sized beryllium doped magnesium BeMgn clusters and their anions
,”
Results Phys.
26
,
104341
(
2021
).
17.
F.
Zhang
,
H.
Zhang
,
W.
Xin
,
P.
Chen
,
Y.
Hu
,
X.
Zhang
, and
Y.
Zhao
, “
Probing the structural evolution and electronic properties of divalent metal Be2Mgn clusters from small to medium-size
,”
Sci. Rep.
10
,
6052
(
2020
).
18.
L.
Zeng
,
X.-F.
Wei
,
M.-K.
Liang
,
P.-J.
Deng
,
J.
Bi
, and
B.-C.
Zhu
, “
BeMg9: A tower-like type doped magnesium clusters with high stability
,”
Comput. Mater. Sci.
182
,
109795
(
2020
).
19.
L.
Zeng
,
M.-K.
Liang
,
X.-F.
Wei
,
J.
Guo
,
S.
Zhang
,
J.
Bi
,
W.
Dai
, and
B.-C.
Zhu
, “
Probing the structural evolution, electronic and spectral properties of beryllium doped magnesium and its ion clusters
,”
New J. Chem.
44
,
16929
16940
(
2020
).
20.
L.
Zeng
,
M.-K.
Liang
,
X.-F.
Wei
,
J.
Guo
,
W.
Dai
, and
B.-C.
Zhu
, “
New potential stable structures of XMgn (X = Ge, C, Sn; n = 2–12) clusters: XMg8 with high stability
,”
J. Phys.: Condens. Matter
33
,
065302
(
2020
).
21.
B.-C.
Zhu
,
S.
Zhang
, and
L.
Zeng
, “
The effect of silicon doping on the geometrical structures, stability, and electronic and spectral properties of magnesium clusters: DFT study of SiMgn (n = 1–12) clusters
,”
Int. J. Quantum Chem.
120
,
e26143
(
2020
).
22.
B.-C.
Zhu
,
P.-J.
Deng
, and
L.
Zeng
, “
Systematic theoretical study on structural, stability, electronic, and spectral properties of Si2MgnQ (Q = 0, ±1; n= 1–11) clusters of silicon–magnesium sensor material
,”
Front. Chem.
7
,
771
(
2019
).
23.
B.-C.
Zhu
,
P.-J.
Deng
,
J.
Guo
,
Z.
Lu
, and
J.
Zhao
, “
A single palladium atom immerses in magnesium clusters: PdMgn (n = 2–20) clusters DFT study
,”
New J. Phys.
23
,
103002
(
2021
).
24.
Q. Y.
Li
,
S. G.
Xi
,
Y. F.
Hu
,
Y. Q.
Yuan
,
Y. R.
Zhao
,
M. C.
Li
,
J. J.
Yuan
, and
Y. J.
Yang
, “
Probing the structural and electronic properties of neutral and anionic strontium-doped magnesium clusters
,”
Comput. Mater. Sci.
197
,
110605
(
2021
).
25.
S.-G.
Xi
,
Q.-Y.
Li
,
Y.-F.
Hu
,
Y.-Q.
Yuan
,
Y.-R.
Zhao
,
J.-J.
Yuan
,
M.-C.
Li
, and
Y.-J.
Yang
, “
Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
,”
Chin. Phys. B
31
,
016106
(
2022
).
26.
Y.
Jian-Gang
,
W.
Xian-Wei
,
W.
Yuan-Xu
,
Q.
Jing
, and
L.
You-Hua
, “
First-principles study of the NiMgn (n = 1–12) clusters
,”
Acta Phys. Sin. (Chin. Ed.)
57
,
4166
4173
(
2008
).
27.
Y.
Feng
,
R.
Wang
,
H.
Liu
, and
Z.
Jin
, “
Thermodynamic reassessment of the magnesium–gallium system
,”
J. Alloys Compd.
486
,
581
(
2009
).
28.
V.
Bazhenov
,
A.
Koltygin
,
A.
Komissarov
,
A.
Li
,
V.
Bautin
,
R.
Khasenova
,
A.
Anishchenko
,
A.
Seferyan
,
J.
Komissarova
, and
Y.
Estrin
, “
Gallium-containing magnesium alloy for potential use as temporary implants in osteosynthesis
,”
J. Magnesium Alloys
8
,
352
363
(
2020
).
29.
Q.
Gao
,
Y.
Du
,
D.
Zhao
,
A.
Wang
,
J.
Wang
,
S.
Liu
, and
Y.
Ouyang
, “
Elastic, phonon and thermodynamic properties of Mg–Ga compounds from first-principles calculations
,”
Calphad
37
,
137
144
(
2012
).
30.
Y.-B.
Kang
,
J.
Jeong
, and
S. H.
Oh
, “
Critical evaluation and thermodynamic optimization of Mg–Ga system and effect of low pressure on phase equilibria
,”
Calphad
46
,
168
175
(
2014
).
31.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
2070
(
2012
).
32.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
33.
M.
Frisch
,
G.
Trucks
,
H.
Schlegel
,
G.
Scuseria
,
M.
Robb
,
J.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G.
Petersson
 et al, gaussian 09 Revision D. 01, 2009,
Gaussian Inc.
,
Wallingford CT
,
2009
, Vol. 106.
34.
Y. R.
Zhao
,
T. T.
Bai
,
L. N.
Jia
,
W.
Xin
,
Y. F.
Hu
,
X. S.
Zheng
, and
S. T.
Hou
, “
Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters
,”
J. Phys. Chem. C
123
,
28561
28568
(
2019
).
35.
X.
Xia
,
X.
Kuang
,
C.
Lu
,
Y.
Jin
,
X.
Xing
,
G.
Merino
, and
A.
Hermann
, “
Deciphering the structural evolution and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster
,”
J. Phys. Chem. A
120
,
7947
7954
(
2016
).
36.
C.
Lu
,
W.
Gong
,
Q.
Li
, and
C.
Chen
, “
Elucidating stress–strain relations of ZrB12 from first-principles studies
,”
J. Phys. Chem. Lett.
11
,
9165
9170
(
2020
).
37.
B.-C.
Zhu
,
P.-J.
Deng
,
S.-Y.
Xiong
,
W.
Dai
,
L.
Zeng
, and
J.
Guo
, “
Au5Br: A new member of highly stable 2D-type doped gold nanomaterial
,”
Comput. Mater. Sci.
194
,
110446
(
2021
).
38.
B.-C.
Zhu
,
P.-J.
Deng
,
L.
Zeng
, and
J.
Guo
, “
Computational exploration of gallium-doped neutral and anionic magnesium nanocluster materials: Ga2Mgnq (n = 1–11; q = 0, −1) nanocluster’s properties based on DFT
,”
Mater. Today Commun.
29
,
103004
(
2021
).
39.
C.
Lu
and
C.
Chen
, “
Indentation strengths of zirconium diboride: Intrinsic versus extrinsic mechanisms
,”
J. Phys. Chem. Lett.
12
,
2848
2853
(
2021
).
40.
C.
Lu
and
C.
Chen
, “
Structure-strength relations of distinct MoN phases from first-principles calculations
,”
Phys. Rev. Mater.
4
,
044002
(
2020
).
41.
C.
Lu
and
C.
Chen
, “
Indentation-strain stiffening in tungsten nitrides: Mechanisms and implications
,”
Phys. Rev. Mater.
4
,
043402
(
2020
).
42.
B.
Chen
,
L. J.
Conway
,
W.
Sun
,
X.
Kuang
,
C.
Lu
, and
A.
Hermann
, “
Phase stability and superconductivity of lead hydrides at high pressure
,”
Phys. Rev. B
103
,
035131
(
2021
).
43.
W.
Sun
,
X.
Kuang
,
H. D. J.
Keen
,
C.
Lu
, and
A.
Hermann
, “
Second group of high-pressure high-temperature lanthanide polyhydride superconductors
,”
Phys. Rev. B
102
,
144524
(
2020
).
44.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
45.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
46.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
47.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
, “
Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint
,”
Chem. Rev.
88
,
899
926
(
1988
).
48.
R. F. W.
Bader
, “
Atoms in molecules
,”
Acc. Chem. Res.
18
,
9
15
(
1985
).
49.
R. F. W.
Bader
, “
A quantum theory of molecular structure and its applications
,”
Chem. Rev.
91
,
893
928
(
1991
).
50.
A. D.
Becke
and
K. E.
Edgecombe
, “
A simple measure of electron localization in atomic and molecular systems
,”
J. Chem. Phys.
92
,
5397
5403
(
1990
).
51.
T.
Lu
and
F.
Chen
, “
Bond order analysis based on the Laplacian of electron density in fuzzy overlap space
,”
J. Phys. Chem. A
117
,
3100
3108
(
2013
).
52.
I.
Mayer
, “
On bond orders and valences in the Ab initio quantum chemical theory
,”
Int. J. Quantum Chem.
29
,
73
84
(
1986
).
53.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
54.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
,
S. J.
Plimpton
, and
S. J.
Plimpton
, “
LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
55.
Y.-H.
Liao
,
J.
Guo
,
P.-J.
Deng
,
W.
Dai
,
L.
Zeng
, and
B.-C.
Zhu
, “
Decrypting the structural, electronic and spectroscopic properties of GeMgn+ (n = 2–12) clusters: A DFT study
,”
J. Cluster Sci.
33
,
1093
1101
(
2022
).

Supplementary Material

You do not currently have access to this content.