An overview of mathematical properties of the non-local second order derivatives of the canonical, grand canonical, isomorphic, and grand isomorphic ensembles is given. The significance of their positive or negative semidefiniteness and the implications of these properties for atoms and molecules are discussed. Based on this property, many other interesting properties can be derived, such as the expansion in eigenfunctions, bounds on the diagonal and off-diagonal elements, and the eigenvalues of these kernels. We also prove Kato’s theorem for the softness kernel and linear response and the dissociation limit of the linear responses as the sum of the linear responses of the individual fragments when dissociating a system into two non-interacting molecular fragments. Finally, strategies for the practical calculation of these kernels, their eigenfunctions, and their eigenvalues are discussed.

1.
R. G.
Parr
and
W.
Yang
, “
Density-functional theory of the electronic structure of molecules
,”
Annu. Rev. Phys. Chem.
46
,
701
728
(
1995
).
2.
H.
Chermette
, “
Chemical reactivity indexes in density functional theory
,”
J. Comput. Chem.
20
,
129
154
(
1999
).
3.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
, “
Conceptual density functional theory
,”
Chem. Rev.
103
,
1793
1874
(
2003
).
4.
F.
De Proft
and
P.
Geerlings
, “
Conceptual and computational DFT in the study of aromaticity
,”
Chem. Rev.
101
,
1451
1464
(
2001
).
5.
P. W.
Ayers
,
J. S. M.
Anderson
, and
L. J.
Bartolotti
, “
Perturbative perspectives on the chemical reaction prediction problem
,”
Int. J. Quantum Chem.
101
,
520
534
(
2005
).
6.
J. L.
Gázquez
, “
Perspectives on the density functional theory of chemical reactivity
,”
J. Mex. Chem. Soc.
52
,
3
10
(
2008
).
7.
S. B.
Liu
, “
Conceptual density functional theory and some recent developments
,”
Acta Phys.-Chim. Sin.
25
,
590
600
(
2009
).
8.
P.
Geerlings
,
E.
Chamorro
,
P. K.
Chattaraj
,
F. De.
Proft
,
J. L.
Gázquez
,
S. B.
Liu
,
C.
Morell
,
A.
Toro-Labbé
,
A.
Vela
, and
P.
Ayers
, “
Conceptual density functional theory: Status, prospects, issues
,”
Theor. Chem. Acc.
139
,
36
(
2020
).
9.
N.
Sablon
,
F.
De Proft
, and
P.
Geerlings
, “
The linear response kernel: Inductive and resonance effects quantified
,”
J. Phys. Chem. Lett.
1
,
1228
1234
(
2010
).
10.
S.
Fias
,
Z.
Boisdenghien
,
T.
Stuyver
,
M.
Audiffred
,
G.
Merino
,
P.
Geerlings
, and
F.
De Proft
, “
Analysis of aromaticity in planar metal systems using the linear response kernel
,”
J. Phys. Chem. A
117
,
3556
3560
(
2013
).
11.
S.
Fias
,
P.
Geerlings
,
P.
Ayers
, and
F.
De Proft
, “
π, σ aromaticity and anti-aromaticity as retrieved by the linear response kernel
,”
Phys. Chem. Chem. Phys.
15
,
2882
2889
(
2013
).
12.
Z.
Boisdenghien
,
C.
Van Alsenoy
,
F.
De Proft
, and
P.
Geerlings
, “
Evaluating and interpreting the chemical relevance of the linear response kernel for atoms
,”
J. Chem. Theory Comput.
9
,
1007
1015
(
2013
).
13.
P.
Geerlings
,
S.
Fias
,
Z.
Boisdenghien
, and
F.
De Proft
, “
Conceptual DFT: Chemistry from the linear response function
,”
Chem. Soc. Rev.
43
,
4989
5008
(
2014
).
14.
P.
Geerlings
,
Z.
Boisdenghien
,
F.
De Proft
, and
S.
Fias
, “
The E = E[N, v] functional and the linear response function: A conceptual DFT viewpoint
,”
Theor. Chem. Acc.
135
,
213
(
2016
).
15.
R. F.
Nalewajski
and
R. G.
Parr
, “
Legendre transforms and Maxwell relations in density functional theory
,”
J. Chem. Phys.
77
,
399
407
(
1982
).
16.
M.
Berkowitz
and
R. G.
Parr
, “
Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities
,”
J. Chem. Phys.
88
,
2554
2557
(
1988
).
17.
M. H.
Cohen
,
M. V.
Ganduglia‐Pirovano
, and
J.
Kudrnovský
, “
Reactivity kernels, the normal modes of chemical reactivity, and the hardness and softness spectra
,”
J. Chem. Phys.
103
,
3543
3551
(
1995
).
18.
P.
Senet
, “
Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density
,”
J. Chem. Phys.
105
,
6471
6489
(
1996
).
19.
P.
Senet
, “
Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness
,”
J. Chem. Phys.
107
,
2516
2524
(
1997
).
20.
P. W.
Ayers
and
R. G.
Parr
, “
Variational principles for describing chemical reactions. Reactivity indices based on the external potential
,”
J. Am. Chem. Soc.
123
,
2007
2017
(
2001
).
21.
P. W.
Ayers
, “
Strategies for computing chemical reactivity indices
,”
Theor. Chem. Acc.
106
,
271
279
(
2001
).
22.
S.
Liu
,
T.
Li
, and
P. W.
Ayers
, “
Potentialphilicity and potentialphobicity: Reactivity indicators for external potential changes from density functional reactivity theory
,”
J. Chem. Phys.
131
,
114106
(
2009
).
23.
E.
Echegaray
,
S.
Rabi
,
C.
Cárdenas
,
F. H.
Zadeh
,
N.
Rabi
,
S.
Lee
,
J. S. M.
Anderson
,
A.
Toro-Labbe
, and
P. W.
Ayers
, “
In pursuit of negative Fukui functions: Molecules with very small band gaps
,”
J. Mol. Model.
20
,
2162
(
2014
).
24.
P. W.
Ayers
,
R. C.
Morrison
, and
R. K.
Roy
, “
Variational principles for describing chemical reactions: Condensed reactivity indices
,”
J. Chem. Phys.
116
,
8731
8744
(
2002
).
25.
P.
Bultinck
and
R.
Carbó-Dorca
, “
Negative and infinite Fukui functions: The role of diagonal dominance in the hardness matrix
,”
J. Math. Chem.
34
,
67
74
(
2003
).
26.
P. W.
Ayers
, “
Can one oxidize an atom by reducing the molecule that contains it?
,”
Phys. Chem. Chem. Phys.
8
,
3387
3390
(
2006
).
27.
A.
Savin
,
F.
Colonna
, and
M.
Allavena
, “
Analysis of the linear response function along the adiabatic connection from the Kohn–Sham to the correlated system
,”
J. Chem. Phys.
115
,
6827
6833
(
2001
).
28.
Z.
Boisdenghien
,
S.
Fias
,
C.
Van Alsenoy
,
F.
De Proft
, and
P.
Geerlings
, “
Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: Open shell
,”
Phys. Chem. Chem. Phys.
16
,
14614
14624
(
2014
).
29.
S.
Fias
,
Z.
Boisdenghien
,
F.
De Proft
, and
P.
Geerlings
, “
The spin polarized linear response from density functional theory: Theory and application to atoms
,”
J. Chem. Phys.
141
,
184107
(
2014
).
30.
Z.
Boisdenghien
,
S.
Fias
,
F.
Da Pieve
,
F.
De Proft
, and
P.
Geerlings
, “
The polarisability of atoms and molecules: A comparison between a conceptual density functional theory approach and time-dependent density functional theory
,”
Mol. Phys.
113
,
1890
1898
(
2015
).
31.
P.
Geerlings
,
S.
Fias
,
T.
Stuyver
,
P. W.
Ayers
,
R.
Balawender
, and
F.
De Proft
, “
New insights and horizons from the linear response function in conceptual DFT
,” in
Density Functional Theory
(
IntechOpen
,
2019
), pp.
3
29
.
32.
P.
Geerlings
, “
The linear response function
,” in
Towards a New Chemical Reactivity Theory
, edited by
S.
Liu
(
Wiley-VCH
,
2022
).
33.
W.
Yang
and
R. G.
Parr
, “
Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
82
,
6723
6726
(
1985
).
34.
F.
Heidar-Zadeh
,
M.
Richer
,
S.
Fias
,
R. A.
Miranda-Quintana
,
M.
Chan
,
M.
Franco-Pérez
,
C. E.
González-Espinoza
,
T. D.
Kim
,
C.
Lanssens
,
A. H. G.
Patel
,
X. D.
Yang
,
E.
Vöhringer-Martinez
,
C.
Cárdenas
,
T.
Verstraelen
, and
P. W.
Ayers
, “
An explicit approach to conceptual density functional theory descriptors of arbitrary order
,”
Chem. Phys. Lett.
660
,
307
312
(
2016
).
35.
S.
Fias
,
F.
Heidar-Zadeh
,
J. S. M.
Anderson
,
P. W.
Ayers
, and
R. G.
Parr
, “
A reference-free stockholder partitioning method based on the force on electrons
,”
J. Comput. Chem.
39
,
1044
1050
(
2017
).
36.
W.
Kohn
, “
Density functional and density matrix method scaling linearly with the number of atoms
,”
Phys. Rev. Lett.
76
,
3168
3171
(
1996
).
37.
E.
Prodan
and
W.
Kohn
, “
Nearsightedness of electronic matter
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
11635
11638
(
2005
).
38.
S.
Fias
,
F.
Heidar-Zadeh
,
P.
Geerlings
, and
P. W.
Ayers
, “
Chemical transferability of functional groups follows from the nearsightedness of electronic matter
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11633
11638
(
2017
).
39.
M.
Berkowitz
,
S. K.
Ghosh
, and
R. G.
Parr
, “
On the concept of local hardness in chemistry
,”
J. Am. Chem. Soc.
107
,
6811
6814
(
1985
).
40.
S. K.
Ghosh
and
M.
Berkowitz
, “
A classical fluid-like approach to the density-functional formalism of many-electron systems
,”
J. Chem. Phys.
83
,
2976
2983
(
1985
).
41.
M. K.
Harbola
,
P. K.
Chattaraj
, and
R. G.
Parr
, “
Aspects of the softness and hardness concepts of density-functional theory
,”
Isr. J. Chem.
31
,
395
402
(
1991
).
42.
P. K.
Chattaraj
,
D. R.
Roy
,
P.
Geerlings
, and
M.
Torrent-Sucarrat
,
Theor. Chem. Acc.
118
,
923
930
(
2007
).
43.
P. W.
Ayers
and
R. G.
Parr
, “
Local hardness equalization: Exploiting the ambiguity
,”
J. Chem. Phys.
128
,
184108
(
2008
).
44.
S.
Liu
and
R. G.
Parr
, “
Second-order density-functional description of molecules and chemical changes
,”
J. Chem. Phys.
106
,
5578
5586
(
1997
).
45.
P.
Geerlings
,
F.
De Proft
, and
S.
Fias
, “
Analogies between density functional theory response kernels and derivatives of thermodynamic state functions
,”
Acta Phys.-Chim. Sin.
34
,
699
707
(
2018
).
46.
T.
Gál
, “
Why the traditional concept of local hardness does not work
,”
Theor. Chem. Acc.
131
,
1223
(
2012
).
47.
R.
Cuevas-Saavedra
,
N.
Rabi
, and
P. W.
Ayers
, “
The unconstrained local hardness: An intriguing quantity, beset by problems
,”
Phys. Chem. Chem. Phys.
13
,
19594
19600
(
2011
).
48.
T.
Gál
,
P.
Geerlings
,
F.
De Proft
, and
M.
Torrent-Sucarrat
, “
A new approach to local hardness
,”
Phys. Chem. Chem. Phys.
13
,
15003
15015
(
2011
).
49.
M.
Torrent-Sucarrat
,
F.
De Proft
,
P. W.
Ayers
, and
P.
Geerlings
, “
On the applicability of local softness and hardness
,”
Phys. Chem. Chem. Phys.
12
,
1072
1080
(
2010
).
50.
M.
Torrent-Sucarrat
,
F.
De Proft
,
P.
Geerlings
, and
P. W.
Ayers
, “
Do the local softness and hardness indicate the softest and hardest regions of a molecule?
,”
Chem.-Eur. J.
14
,
8652
8660
(
2008
).
51.
C.
Cárdenas
,
P. W.
Ayers
, and
A.
Cedillo
, “
Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory
,”
J. Chem. Phys.
134
,
174103
(
2011
).
52.
P.
Bultinck
,
C.
Cárdenas
,
P.
Fuentealba
,
P. A.
Johnson
, and
P. W.
Ayers
, “
Atomic charges and the electrostatic potential are ill-defined in degenerate ground states
,”
J. Chem. Theory Comput.
9
,
4779
4788
(
2013
).
53.
P.
Bultinck
,
C.
Cárdenas
,
P.
Fuentealba
,
P. A.
Johnson
, and
P. W.
Ayers
, “
How to compute the fukui matrix and function for systems with (quasi-)degenerate states
,”
J. Chem. Theory Comput.
10
,
202
210
(
2014
).
54.
P.
Bultinck
,
D.
Jayatilaka
, and
C.
Cárdenas
, “
A problematic issue for atoms in molecules: Impact of (quasi-)degenerate states on quantum theory atoms in molecules and Hirshfeld-I properties
,”
Comput. Theor. Chem.
1053
,
106
111
(
2015
).
55.
M.
Levy
, “
Electron densities in search of Hamiltonians
,”
Phys. Rev. A
26
,
1200
1208
(
1982
).
56.
H.
Englisch
and
R.
Englisch
, “
Hohenberg–Kohn theorem and non-v-representable densities
,”
Physica A
121
,
253
268
(
1983
).
57.
E. H.
Lieb
, “
Density functionals for Coulomb systems
,”
Int. J. Quantum Chem.
24
,
243
277
(
1983
).
58.
H.
Englisch
and
R.
Englisch
, “
Exact density functionals for ground-state energies. 1. General results
,”
Phys. Status Solidi B
123
,
711
721
(
1984
).
59.
H.
Englisch
and
R.
Englisch
, “
Exact density functionals for ground-state energies. 2. Details and remarks
,”
Phys. Status Solidi B
124
,
373
379
(
1984
).
60.
H.
Eschrig
,
The Fundamentals of Density Functional Theory
(
Teubner
,
Stuttgart-Leipzig, Germany
,
1996
).
61.
P. W.
Ayers
, “
Axiomatic formulations of the Hohenberg–Kohn functional
,”
Phys. Rev. A
73
,
012513
(
2006
).
62.
J. P.
Perdew
and
M.
Levy
, “
Extrema of the density functional for the energy: Excited states from the ground-state theory
,”
Phys. Rev. B
31
,
6264
6272
(
1985
).
63.
H.
Eschrig
, “
T > 0 ensemble-state density functional theory via Legendre transform
,”
Phys. Rev. B
82
,
205120
(
2010
).
64.
M.
Franco-Pérez
,
P. W.
Ayers
,
J. L.
Gázquez
, and
A.
Vela
, “
Local and linear chemical reactivity response functions at finite temperature in density functional theory
,”
J. Chem. Phys.
143
,
244117
(
2015
).
65.
M.
Franco-Pérez
,
P. W.
Ayers
,
J. L.
Gázquez
, and
A.
Vela
, “
Thermodynamic responses of electronic systems
,”
J. Chem. Phys.
147
,
094105
(
2017
).
66.
R. A.
Miranda-Quintana
and
P. W.
Ayers
, “
Fractional electron number, temperature, and perturbations in chemical reactions
,”
Phys. Chem. Chem. Phys.
18
,
15070
15080
(
2016
).
67.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
68.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
London; New York
,
1989
).
69.
J. L.
Gázquez
,
M.
Franco‐Pérez
,
P. W.
Ayers
, and
A.
Vela
, “
Temperature-dependent approach to chemical reactivity concepts in density functional theory
,”
Int. J. Quantum Chem.
119
,
e25797
(
2019
).
70.
H.
Hellmann
,
Einführung in Die Quantenchemie
(
Franz Deuticke
,
Leipzig
,
1937
), p.
285
.
71.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
72.
D.
Hilbert
, “
Grundzüge einer allgemeinen theorie der linearen integralgleichungen [erste Mitteilung]
,”
Gottinger Nachr.
1904
,
49
91
.
73.
J.
Mercer
, “
Functions of positive and negative type, and their connection with the theory of integral equations
,”
Philos. Trans. R. Soc., A
209
,
415
446
(
1909
).
74.
T.
Bromwich
,
Quadratic Forms and Their Classification by Means of Invariant-Factors
, Cambridge Tracts in Mathematics and Mathematical Physics Vol. 3 (
Cambridge University Press
,
1906
).
75.
G.
Giorgio
, “
Various proofs of the Sylvester criterion for quadratic forms
,”
J. Math. Res.
9
,
55
66
(
2017
).
76.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2000
), p.
404
.
77.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2000
), p.
126
.
78.
P. W.
Ayers
, “
The dependence on and continuity of the energy and other molecular properties with respect to the number of electrons
,”
J. Math. Chem.
43
,
285
303
(
2008
).
79.
D.
Peng
and
W.
Yang
, “
Fukui function and response function for nonlocal and fractional systems
,”
J. Chem. Phys.
138
,
184108
(
2013
).
80.
T.
Kato
, “
On the eigenfunctions of many-particle systems in quantum mechanics
,”
Commun. Pure Appl. Math.
10
,
151
177
(
1957
).
81.
R. T.
Pack
and
W. B.
Brown
, “
Cusp conditions for molecular wavefunctions
,”
J. Chem. Phys.
45
,
556
559
(
1966
).
82.
P. W.
Ayers
, “
Density per particle as a descriptor of Coulombic systems
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
1959
1964
(
2000
).
83.
Á.
Nagy
and
K. D.
Sen
, “
Exact results on the curvature of the electron density at the cusp in certain highly excited states of atoms
,”
Chem. Phys. Lett.
332
,
154
158
(
2000
).
84.
Á.
Nagy
and
K. D.
Sen
, “
Higher-order cusp of the density in certain highly excited states of atoms and molecules
,”
J. Phys. B: At., Mol. Opt. Phys.
33
,
1745
1751
(
2000
).
85.
R.
Nalewajski
, “
The hardness based molecular charge sensitivities and their use in the theory of chemical reactivity
,” in
Chemical Hardness
, edited by
K.
Sen
(
Springer-Verlag
,
1993
), pp.
115
186
.
86.
R. F.
Nalewajski
, “
Chemical reactivity concepts in charge sensitivity analysis
,”
Int. J. Quant. Chem.
56
,
453
476
(
1995
).
87.
P.
Senet
, “
Variational principle for eigenmodes of reactivity in conceptual density functional theory
,”
ACS Omega
5
,
25349
25357
(
2020
).
88.
P. K.
Chattaraj
,
A.
Cedillo
, and
R. G.
Parr
, “
Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom
,”
J. Chem. Phys.
103
,
10621
10626
(
1995
).
89.
R. G.
Parr
and
L. J.
Bartolotti
, “
Some remarks on the density functional theory of few-electron systems
,”
J. Phys. Chem.
87
,
2810
2815
(
1983
).
90.
P. W.
Ayers
,
F.
De Proft
, and
P.
Geerlings
, “
Comparison of the utility of the shape function and electron density for predicting periodic properties: Atomic ionization potentials
,”
Phys. Rev. A
75
,
012508
(
2007
).
91.
M.
Levy
, “
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem
,”
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
6065
(
1979
).
92.
S. M.
Valone
, “
A one-to-one mapping between one-particle densities and some n-particle ensembles
,”
J. Chem. Phys.
73
,
4653
(
1980
).
93.
M.
Levy
,
J. S. M.
Anderson
,
F. H.
Zadeh
, and
P. W.
Ayers
, “
Kinetic and electron–electron energies for convex sums of ground state densities with degeneracies and fractional electron number
,”
J. Chem. Phys.
140
,
18A538
(
2014
).
94.
W.
Langenaeker
,
F.
de Proft
, and
P.
Geerlings
, “
Development of local hardness related reactivity indices: Their application in a study of the SE at monosubstituted benzenes within the HSAB context
,”
J. Phys. Chem.
99
,
6424
6431
(
1995
).
95.
W. T.
Yang
,
A. J.
Cohen
,
F.
De Proft
, and
P.
Geerlings
, “
Analytical evaluation of Fukui functions and real-space linear response function
,”
J. Chem. Phys.
136
,
144110
(
2012
).
96.
R.
Seeger
and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory
,”
J. Chem. Phys.
66
,
3045
(
1977
).
97.
V.
Bach
,
E. H.
Lieb
,
M.
Loss
, and
J. P.
Solovej
, “
There are no unfilled shells in unrestricted Hartree–Fock theory
,”
Phys. Rev. Lett.
72
,
2981
2983
(
1994
).
98.
R.
Bauernschmitt
and
R.
Ahlrichs
, “
Stability analysis for solutions of the closed shell Kohn–Sham equation
,”
J. Chem. Phys.
104
,
9047
(
1996
).
99.
P. D.
Robinson
, “H2+
: A problem in perturbation theory
,”
Proc. Phys. Soc.
78
,
537
548
(
1961
).
100.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H2+, He2+, LiH+, and Ne2+
,”
J. Chem. Phys.
126
,
104102
(
2007
).
101.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2000
), p.
115
.
102.
B. N.
Parlett
,
The Symmetric Eigenvalue Problem
(
Prentice-Hall
,
1980
).
You do not currently have access to this content.