Under ambient atmospheric conditions, a thin film of water wets many solid surfaces, including insulators, ice, and salt. The film thickness as well as its transport behavior sensitively depend on the surrounding humidity. Understanding this intricate interplay is of the highest relevance for water transport through porous media, particularly in the context of soil salinization induced by evaporation. Here, we use molecular simulations to evaluate the transport properties of thin water films on prototypical salt and soil interfaces, namely NaCl and silica solid surfaces. Our results show two distinct regimes for water transport: at low water coverage, the film permeance scales linearly with the adsorbed amount, in agreement with the activated random walk model. For thicker water films, the permeance scales as the adsorbed amount to the power of 3, in line with the Stokes equation. By comparing results obtained for silica and NaCl surfaces, we find that, at low water coverage, water permeance at the silica surface is considerably lower than at the NaCl surface, which we attribute to difference in hydrogen bonding. We also investigate the effect of atomic surface defects on the transport properties. Finally, in the context of water transport through the porous material, we determine the humidity-dependent crossover between a vapor-dominated and a thin film-dominated transport regimes depending on the pore size.

1.
I.
Langmuir
, “
The adsorption of gases on plane surfaces of glass, mica and platinum
,”
J. Am. Chem. Soc.
40
,
1361
1403
(
1918
).
2.
G. E.
Ewing
, “
Thin film water
,”
J. Phys. Chem. B
108
,
15953
15961
(
2004
).
3.
G. E.
Ewing
, “
H2O on NaCl: From single molecule, to clusters, to monolayer, to thin film, to deliquescence
,” in , Structure and Bonding Vol. 116, edited by
D. J.
Wales
(
Springer
,
2005
), pp.
1
25
.
4.
G. E.
Ewing
, “
Ambient thin film water on insulator surfaces
,”
Chem. Rev.
106
,
1511
1526
(
2006
).
5.
P. G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
6.
C.
Rodriguez-Navarro
and
E.
Doehne
, “
Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern
,”
Earth Surf. Processes Landforms
24
,
191
209
(
1999
).
7.
U.
Nachshon
,
N.
Weisbrod
,
R.
Katzir
, and
A.
Nasser
, “
NaCl crust architecture and its impact on evaporation: Three-dimensional insights
,”
Geophys. Res. Lett.
45
,
6100
6108
, (
2018
).
8.
N.
Sghaier
and
M.
Prat
, “
Effect of efflorescence formation on drying kinetics of porous media
,”
Transp. Porous Media
80
,
441
454
(
2009
).
9.
H.
Eloukabi
,
N.
Sghaier
,
S.
Ben Nasrallah
, and
M.
Prat
, “
Experimental study of the effect of sodium chloride on drying of porous media: The crusty–patchy efflorescence transition
,”
Int. J. Heat Mass Transfer
56
,
80
93
(
2013
).
10.
U.
Nachshon
and
N.
Weisbrod
, “
Beyond the salt crust: On combined evaporation and subflorescent salt precipitation in porous media
,”
Transp. Porous Media
110
,
295
310
(
2015
).
11.
A.
Singh
, “
Soil salinization management for sustainable development: A review
,”
J. Environ. Manage.
277
,
111383
(
2021
).
12.
S. J.
Peters
and
G. E.
Ewing
, “
Water on salt: An infrared study of adsorbed H2O on NaCl(100) under ambient conditions
,”
J. Phys. Chem. B
101
,
10880
10886
(
1997
).
13.
M. C.
Foster
and
G. E.
Ewing
, “
Adsorption of water on the NaCl(001) surface. II. An infrared study at ambient temperatures
,”
J. Chem. Phys.
112
,
6817
6826
(
2000
).
14.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
1095
(
2010
).
15.
A.
Schlaich
,
J.
Kappler
, and
R. R.
Netz
, “
Hydration friction in nanoconfinement: From bulk via interfacial to dry friction
,”
Nano Lett.
17
,
5969
5976
(
2017
).
16.
Y.
Choi
,
L. A.
Baker
,
H.
Hillebrenner
,
C. R.
Martin
, and
S.
Matter
, “
Biosensing with conically shaped nanopores and nanotubes
,”
Phys. Chem. Chem. Phys.
8
,
4976
4988
(
2006
).
17.
D. A.
Reed
and
G.
Ehrlich
, “
Surface diffusion, atomic jump rates and thermodynamics
,”
Surf. Sci.
102
,
588
609
(
1981
).
18.
O.
Engkvist
and
A. J.
Stone
, “
Adsorption of water on the NaCl(001) surface. III. Monte Carlo simulations at ambient temperatures
,”
J. Chem. Phys.
112
,
6827
6833
(
2000
).
19.
M.
Hucher
,
A.
Oberlin Mathieu-Sicaud
, and
R.
Hocart
, “
Adsorption de vapeur d’eau sur les faces de clivage de quelques halogénures alcalins
,”
Bull. Mineral.
90
,
320
332
(
1967
).
20.
H.
Shindo
,
M.
Ohashi
,
O.
Tateishi
, and
A.
Seo
, “
Atomic force microscopic observation of step movements on NaCl(001) and NaF(001) with the help of adsorbed water
,”
J. Chem. Soc., Faraday Trans.
93
,
1169
1174
(
1997
).
21.
V. P.
Vlasov
,
A. E.
Muslimov
, and
V. M.
Kanevsky
, “
Water adsorption on the (001) surface of NaCl
,”
J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.
14
,
1040
1043
(
2020
).
22.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
 et al, “
LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
23.
P.
Loche
,
P.
Steinbrunner
,
S.
Friedowitz
,
R. R.
Netz
, and
D. J.
Bonthuis
, “
Transferable ion force fields in water from a simultaneous optimization of ion solvation and ion–ion interaction
,”
J. Phys. Chem. B
125
,
8581
8587
(
2021
).
24.
R.
Fuentes-Azcatl
and
J.
Alejandre
, “
Non-polarizable force field of water based on the dielectric constant: Tip4p/ɛ
,”
J. Phys. Chem. B
118
,
1263
1272
(
2014
).
25.
S.
Gravelle
(
2022
). “
Molecular simulation scripts for thin film water on NaCl surface
,” DaRUS, V1, Dataset. .
26.
B.
Coasne
,
A.
Galarneau
,
R. J. M.
Pellenq
, and
F.
Di Renzo
, “
Adsorption, intrusion and freezing in porous silica: The view from the nanoscale
,”
Chem. Soc. Rev.
42
,
4141
4171
(
2013
).
27.
H.
Shinto
,
T.
Sakakibara
, and
K.
Higashitani
, “
Molecular dynamics simulations of water at NaCl(001) and NaCl(011) surfaces
,”
J. Phys. Chem. B
102
,
1974
1981
(
1998
).
28.
D.
Nicholson
and
N. G.
Parsonage
,
Computer Simulation and the Statistical Mechanics of Adsorption
(
Academic Press
,
1982
).
29.
S.
Nakaoka
,
D.
Surblys
,
Y.
Yamaguchi
,
K.
Kuroda
,
T.
Nakajima
, and
H.
Fujimura
, “
Local viscosity change in water near a solid–liquid interface and its extraction by means of molecular rotational diffusion–a molecular dynamics study
,”
Chem. Phys. Lett.
591
,
306
311
(
2014
).
30.
M.
Rezaei
,
A. R.
Azimian
,
A. R.
Pishevar
, and
D. J.
Bonthuis
, “
Viscous interfacial layer formation causes electroosmotic mobility reversal in monovalent electrolytes
,”
Phys. Chem. Chem. Phys.
20
,
22517
22524
(
2018
).
31.
A.
Wolde-Kidan
and
R. R.
Netz
, “
Interplay of interfacial viscosity, specific-ion, and impurity adsorption determines zeta potentials of phospholipid membranes
,”
Langmuir
37
,
8463
8473
(
2021
).
32.
S.
Gravelle
(
2022
). “
Movies of thin film water on NaCl(100) surface
,” DaRUS, V1, Dataset. .
33.
J.-G.
Choi
,
D. D.
Do
, and
H. D.
Do
, “
Surface diffusion of adsorbed molecules in porous media: Monolayer, multilayer, and capillary condensation regimes
,”
Ind. Eng. Chem. Res.
40
,
4005
4031
(
2001
).
34.
E.
Mason
and
A.
Malinauskas
, “
Gas Transport in Porous Media: The Dusty-Gas Model
,” in
Chemical Engineering Monographs
(
Elsevier
,
1983
).
35.
F. S.
Emami
,
V.
Puddu
,
R. J.
Berry
,
V.
Varshney
,
S. V.
Patwardhan
,
C. C.
Perry
, and
H.
Heinz
, “
Force field and a surface model database for silica to simulate interfacial properties in atomic resolution
,”
Chem. Mater.
26
,
2647
2658
(
2014
).
36.
S.
Gravelle
(
2022
). “
Movies of thin film water on rough NaCl surface
,” DaRUS, V1, Dataset. .
37.
B.
Abeles
,
L. F.
Chen
,
J. W.
Johnson
, and
J. M.
Drake
, “
Capillary condensation and surface flow in microporous Vycor glass
,”
Isr. J. Chem.
31
,
99
106
(
1991
).
38.
P. S.
Nobel
,
Physicochemical and Environmental Plant Physiology
(
Academic Press
,
1999
).
39.
S.
Gravelle
and
J.
Dumais
, “
A multi-scale model for fluid transport through a bio-inspired passive valve
,”
J. Chem. Phys.
152
,
014502
(
2020
).

Supplementary Material

You do not currently have access to this content.