State-to-state cross sections and rate coefficients for transitions between rotational/fine-structure levels of OH(X2Π) induced by collisions with atomic hydrogen are reported in this work. The scattering calculations take into account the full open-shell character of the OH + H system and include the four potential energy surfaces (1A′, 1A″, 3A′, 3A″) that correlate with the OH(X2Π) + H(2S) asymptote. Three of these surfaces are repulsive, while the deep H2O well is present on one surface (1A′). The OH + H potential energy curves calculated by Alexander et al. [J. Chem. Phys. 121, 5221 (2004)] are employed in this work. Time independent quantum scattering calculations were performed using the quantum statistical method of Rackham and co-workers [Chem. Phys. Lett. 343, 356 (2001)] because of the presence of the deep H2O well. The computed cross sections include contributions from direct scattering, as well formation and decay of a transient collision complex since the transient HO–H complex is expected to decay nonreactively. Rate coefficients for OH–H inelastic collisions are of interest for astrophysical applications.

1.
M.
Gerin
,
D. A.
Neufeld
, and
J. R.
Goicoechea
,
Annu. Rev. Astron. Astrophys.
54
,
181
(
2016
).
2.
D.
Hollenbach
,
M. J.
Kaufman
,
D.
Neufeld
,
M.
Wolfire
, and
J. R.
Goicoechea
,
Astrophys. J.
754
,
105
(
2012
).
3.
J. R.
Goicoechea
,
C.
Joblin
,
A.
Contursi
,
O.
Berné
,
J.
Cernicharo
,
M.
Gerin
,
J.
Le Bourlot
,
E. A.
Bergin
,
T. A.
Bell
, and
M.
Röllig
,
Astron. Astrophys.
530
,
L16
(
2011
).
4.
R. J.
Shannon
,
M. A.
Blitz
,
A.
Goddard
, and
D. E.
Heard
,
Nat. Chem.
5
,
745
(
2013
).
5.
E.
Herbst
,
Front. Astron. Space Sci.
8
,
776942
(
2021
).
6.
E.
Roueff
and
F.
Lique
,
Chem. Rev.
113
,
8906
(
2013
).
7.
H. S. P.
Müller
,
F.
Schlöder
,
J.
Stutzki
, and
G.
Winnewisser
,
J. Mol. Struct.
742
,
215
(
2005
).
8.
P. J.
Dagdigian
, “
Excitation of astrophysical molecules
,” in
Gas-Phase Chemistry in Space From Elementary Particles to Complex Organic Molecules
, edited by
F.
Lique
and
A.
Faure
(
IOP Press
,
London
,
2019
), Chap. 7, pp.
7-1
7-29
.
9.
10.
A. R.
Offer
and
M. C.
van Hemert
,
J. Chem. Phys.
99
,
3836
(
1993
).
11.
A. R.
Offer
,
M. C.
van Hemert
, and
E. F.
van Dishoeck
,
J. Chem. Phys.
100
,
362
(
1994
).
12.
Q.
Ma
,
J.
Kłos
,
M. H.
Alexander
,
A.
van der Avoird
, and
P. J.
Dagdigian
,
J. Chem. Phys.
141
,
174309
(
2014
).
13.
J.
Kłos
,
Q.
Ma
,
P. J.
Dagdigian
,
M. H.
Alexander
,
A.
Faure
, and
F.
Lique
,
Mon. Not. R. Astron. Soc.
471
,
4249
(
2017
).
14.
J.
Kłos
,
P. J.
Dagdigian
,
M. H.
Alexander
,
A.
Faure
, and
F.
Lique
,
Mon. Not. R. Astron. Soc.
493
,
3491
(
2020
).
15.
B.
Ruscic
, Active Thermochemical Tables (ATcT) values based on version 1.12323 of the Thermochemical Network (2015); available at http://ATcT.anl.gov.
16.
S.
Atahan
and
M. H.
Alexander
,
J. Phys. Chem. A
110
,
5436
(
2006
).
17.
E. J.
Rackham
,
F.
Huarte-Larranaga
, and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
343
,
356
(
2001
).
18.
E. J.
Rackham
,
T.
González-Lezana
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
119
,
12895
(
2003
).
19.
T.
González-Lezana
,
Int. Rev. Phys. Chem.
26
,
29
(
2007
).
20.
S.
Atahan
,
M. H.
Alexander
, and
E. J.
Rackham
,
J. Chem. Phys.
123
,
204306
(
2005
).
21.
M. H.
Alexander
,
E. J.
Rackham
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
5221
(
2004
).
22.
P. J.
Dagdigian
and
M. H.
Alexander
,
Adv. Chem. Phys.
163
,
1
(
2018
).
23.
P. J.
Dagdigian
,
J. Chem. Phys.
146
,
224308
(
2017
).
24.
M. H.
Alexander
,
J. Chem. Phys.
76
,
5974
(
1982
).
25.
M. H.
Alexander
,
P.
Andresen
,
R.
Bacis
,
R.
Bersohn
,
F. J.
Comes
,
P. J.
Dagdigian
,
R. N.
Dixon
,
R. W.
Field
,
G. W.
Flynn
,
K. H.
Gericke
,
E. R.
Grant
,
B. J.
Howard
,
J. R.
Huber
,
D. S.
King
,
J. L.
Kinsey
,
K.
Kleinermanns
,
K.
Kuchitsu
,
A. C.
Luntz
,
A. J.
McCaffery
,
B.
Pouilly
,
H.
Reisler
,
S.
Rosenwaks
,
E. W.
Rothe
,
M.
Shapiro
,
J. P.
Simons
,
R.
Vasudev
,
J. R.
Wiesenfeld
,
C.
Wittig
, and
R. N.
Zare
,
J. Chem. Phys.
89
,
1749
(
1988
).
26.
R. N.
Zare
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
28.
F.
Mélen
,
A. J.
Sauval
,
N.
Grevesse
,
C. B.
Farmer
,
C.
Servais
,
L.
Delbouille
, and
G.
Roland
,
J. Mol. Spectrosc.
174
,
490
(
1995
).
29.
D. J.
Garton
,
T. K.
Minton
,
B.
Maiti
,
D.
Troya
, and
G. C.
Schatz
,
J. Chem. Phys.
118
,
1585
(
2003
).
30.
S. A.
Lahantar
,
J.
Zhang
,
K. G.
McKendrick
, and
T. K.
Minton
,
Nat. Chem.
5
,
315
(
2013
).
31.
B. R.
Johnson
,
J. Comput. Phys.
13
,
281
(
1973
).
32.
P. J.
Dagdigian
,
J. Chem. Phys.
145
,
114301
(
2016
).
33.
D.
Skouteris
,
J. F.
Castillo
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
133
,
128
(
2000
).
34.
M.
Shapiro
and
H.
Kaplan
,
J. Chem. Phys.
71
,
2182
(
1979
).
35.
M.
Kirste
,
L.
Scharfenberg
,
J.
Kłos
,
F.
Lique
,
M. H.
Alexander
,
G.
Meijer
, and
S. Y.
van de Meerakker
,
Phys. Rev. A
82
,
042717
(
2010
).
36.
H. C.
Schewe
,
Q.
Ma
,
N.
Vanhaecke
,
X.
Wang
,
J.
Kłos
,
M. H.
Alexander
,
S. Y. T.
van de Meerakker
,
G.
Meijer
,
A.
van der Avoird
, and
P. J.
Dagdigian
,
J. Chem. Phys.
142
,
204310
(
2015
).

Supplementary Material

You do not currently have access to this content.