The prediction of molecular properties such as equilibrium structures or vibrational wavenumbers is a routine task in computational chemistry. If very high accuracy is required, however, the use of computationally demanding ab initio wavefunction methods is mandatory. We present property calculations utilizing Retaining the Excitation Degree – Møller–Plesset (REMP) and Orbital Optimized REMP (OO-REMP) hybrid perturbation theories, showing that with the latter approach, very accurate results are obtained at second order in perturbation theory. Specifically, equilibrium structures and harmonic vibrational wavenumbers and dipole moments of closed and open shell molecules were calculated and compared to the best available experimental results or very accurate calculations. OO-REMP is capable of predicting bond lengths of small closed and open shell molecules with an accuracy of 0.2 and 0.5 pm, respectively, often within the range of experimental uncertainty. Equilibrium harmonic vibrational wavenumbers are predicted with an accuracy better than 20 cm−1. Dipole moments of small closed and open shell molecules are reproduced with a relative error of less than 3%. Across all investigated properties, it turns out that a 20%:80% Møller–Plesset:Retaining the Excitation Degree mixing ratio consistently provides the best results. This is in line with our previous findings, featuring closed and open shell reaction energies.

1.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
2.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
, repr. ed. (
Wiley
,
Chichester; New York; Weinheim
,
2004
).
3.
D.
Cremer
, “
Møller–Plesset perturbation theory: From small molecule methods to methods for thousands of atoms
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
509
530
(
2011
).
4.
S.
Grimme
, “
Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies
,”
J. Chem. Phys.
118
,
9095
9102
(
2003
).
5.
S.
Grimme
,
L.
Goerigk
, and
R. F.
Fink
, “
Spin-component-scaled electron correlation methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
886
906
(
2012
).
6.
S.
Grimme
, “
Improved third-order Møller–Plesset perturbation theory
,”
J. Comput. Chem.
24
,
1529
1537
(
2003
).
7.
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
, “
Third-order Møller–Plesset perturbation theory made useful? Choice of orbitals and scaling greatly improves accuracy for thermochemistry, kinetics, and intermolecular interactions
,”
J. Phys. Chem. Lett.
10
,
4170
4176
(
2019
).
8.
J.
Lee
and
M.
Head-Gordon
, “
Regularized orbital-optimized second-order Møller–Plesset perturbation theory: A reliable fifth-order-scaling electron correlation model with orbital energy dependent regularizers
,”
J. Chem. Theory Comput.
14
,
5203
5219
(
2018
).
9.
M.
Pitonák
,
P.
Neogrády
,
J.
Cerný
,
S.
Grimme
, and
P.
Hobza
, “
Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data
,”
ChemPhysChem
10
,
282
289
(
2009
).
10.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
, “
Accuracy of quantum chemical methods for large noncovalent complexes
,”
J. Chem. Theory Comput.
9
,
3364
3374
(
2013
).
11.
A.
Karton
and
L.
Goerigk
, “
Accurate reaction barrier heights of pericyclic reactions: Surprisingly large deviations for the CBS-QB3 composite method and their consequences in DFT benchmark studies
,”
J. Comput. Chem.
36
,
622
632
(
2015
).
12.
E.
Soydaş
and
U.
Bozkaya
, “
Accurate open-shell noncovalent interaction energies from the orbital-optimized Møller–Plesset perturbation theory: Achieving CCSD quality at the MP2 level by orbital optimization
,”
J. Chem. Theory Comput.
9
,
4679
4683
(
2013
).
13.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
, “
Assessment of orbital-optimized, spin-component scaled second-order many-body perturbation theory for thermochemistry and kinetics
,”
J. Chem. Theory Comput.
5
,
3060
3073
(
2009
).
14.
T. N.
Lan
and
T.
Yanai
, “
Correlated one-body potential from second-order Møller-Plesset perturbation theory: Alternative to orbital-optimized MP2 method
,”
J. Chem. Phys.
138
,
224108
(
2013
).
15.
E.
Soydaş
and
U.
Bozkaya
, “
Assessment of orbital-optimized third-order Møller–Plesset perturbation theory and its spin-component and spin-opposite scaled variants for thermochemistry and kinetics
,”
J. Chem. Theory Comput.
9
,
1452
1460
(
2013
).
16.
R. C.
Lochan
and
M.
Head-Gordon
, “
Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules
,”
J. Chem. Phys.
126
,
164101
(
2007
).
17.
R. M.
Razban
,
D.
Stück
, and
M.
Head-Gordon
, “
Addressing first derivative discontinuities in orbital-optimised opposite-spin scaled second-order perturbation theory with regularisation
,”
Mol. Phys.
115
,
2102
2109
(
2017
).
18.
U.
Bozkaya
and
C. D.
Sherrill
, “
Orbital-optimized MP2.5 and its analytic gradients: Approaching CCSD(T) quality for noncovalent interactions
,”
J. Chem. Phys.
141
,
204105
(
2014
).
19.
E.
Soydaş
and
U.
Bozkaya
, “
Assessment of orbital-optimized MP2.5 for thermochemistry and kinetics: Dramatic failures of standard perturbation theory approaches for aromatic bond dissociation energies and barrier heights of radical reactions
,”
J. Chem. Theory Comput.
11
,
1564
1573
(
2015
).
20.
U.
Bozkaya
, “
Orbital-optimized MP3 and MP2.5 with density-fitting and cholesky decomposition approximations
,”
J. Chem. Theory Comput.
12
,
1179
1188
(
2016
).
21.
P. S.
Epstein
, “
The Stark effect from the point of view of Schroedinger’s quantum theory
,”
Phys. Rev.
28
,
695
710
(
1926
).
22.
R. K.
Nesbet
, “
Configuration interaction in orbital theories
,”
Proc. R. Soc. London, Ser. A
230
,
312
(
1955
).
23.
C.
Murray
and
E. R.
Davidson
, “
Different forms of perturbation theory for the calculation of the correlation energy
,”
Int. J. Quantum Chem.
43
,
755
768
(
1992
).
24.
P. R.
Surján
and
Á.
Szabados
, “
Appendix to ‘studies in perturbation theory’: The problem of partitioning
,” in
Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Löwdin
, edited by
E. J.
Brändas
and
E. S.
Kryachko
(
Kluwer
,
Dordrecht
,
2004
), Vol. III, pp.
129
185
.
25.
R. F.
Fink
, “
The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach
,”
Chem. Phys.
356
,
39
46
(
2009
).
26.
R. F.
Fink
, “
Two new unitary-invariant and size-consistent perturbation theoretical approaches to the electron correlation energy
,”
Chem. Phys. Lett.
428
,
461
466
(
2006
).
27.
K. G.
Dyall
, “
The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function
,”
J. Chem. Phys.
102
,
4909
4918
(
1995
).
28.
R. F.
Fink
, “
Why does MP2 work?
,”
J. Chem. Phys.
145
,
184101
(
2016
).
29.
S.
Behnle
and
R. F.
Fink
, “
REMP: A hybrid perturbation theory providing improved electronic wavefunctions and properties
,”
J. Chem. Phys.
150
,
124107
(
2019
).
30.
S.
Behnle
and
R. F.
Fink
, “
OO-REMP: Approaching chemical accuracy with second-order perturbation theory
,”
J. Chem. Theory Comput.
17
,
3259
(
2021
).
31.
S.
Behnle
and
R. F.
Fink
, “
UREMP, RO-REMP, and OO-REMP: Hybrid perturbation theories for open-shell electronic structure calculations
,”
J. Chem. Phys.
156
,
124103
(
2022
).
32.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
, “
Derivative studies in Hartree-Fock and Møller-Plesset theories
,”
Int. J. Quantum Chem.
16
,
225
241
(
1979
).
33.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. D.
Simandiras
, “
The elimination of singularities in derivative calculations
,”
Chem. Phys. Lett.
120
,
151
158
(
1985
).
34.
R. J.
Harrison
,
G. B.
Fitzgerald
,
W. D.
Laidig
, and
R. J.
Barteltt
, “
Analytic MBPT(2) second derivatives
,”
Chem. Phys. Lett.
124
,
291
294
(
1986
).
35.
P.
Jørgensen
and
T.
Helgaker
, “
Møller–Plesset energy derivatives
,”
J. Chem. Phys.
89
,
1560
1570
(
1988
).
36.
T.
Helgaker
,
P.
Jørgensen
, and
N. C.
Handy
, “
A numerically stable procedure for calculating Møller-Plesset energy derivatives, derived using the theory of Lagrangians
,”
Theor. Chim. Acta
76
,
227
245
(
1989
).
37.
U.
Bozkaya
and
C. D.
Sherrill
, “
Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions
,”
J. Chem. Phys.
139
,
054104
(
2013
).
38.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
39.
É.
Brémond
,
M.
Savarese
,
N. Q.
Su
,
Á. J.
Pérez-Jiménez
,
X.
Xu
,
J. C.
Sancho-García
, and
C.
Adamo
, “
Benchmarking density functionals on structural parameters of small-/medium-sized organic molecules
,”
J. Chem. Theory Comput.
12
,
459
465
(
2016
).
40.
M.
Piccardo
,
E.
Penocchio
,
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
, “
Semi-experimental equilibrium structure determinations by employing B3LYP/SNSD anharmonic force fields: Validation and application to semirigid organic molecules
,”
J. Phys. Chem. A
119
,
2058
2082
(
2015
).
41.
E.
Penocchio
,
M.
Piccardo
, and
V.
Barone
, “
Semiexperimental equilibrium structures for building blocks of organic and biological molecules: The B2PLYP route
,”
J. Chem. Theory Comput.
11
,
4689
4707
(
2015
).
42.
R.
Fink
and
V.
Staemmler
, “
A multi-configuration reference CEPA method based on pair natural orbitals
,”
Theor. Chim. Acta
87
,
129
145
(
1993
).
43.
R.
Fink
, “
Entwicklung eines Mehrkonfigurations-CEPA-Programms unter Benutzung von PNO’s und Anwendung auf organisch chemische Fragestellungen
,” Ph.D. dissertation (
Ruhr-Universität Bochum
,
Bochum, Germany
,
1991
).
44.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
45.
V.
Staemmler
and
R.
Jaquet
, “
CEPA calculations on open-shell molecules. I. Outline of the method
,”
Theor. Chim. Acta
59
,
487
500
(
1981
).
46.
U.
Meier
and
V.
Staemmler
, “
An efficient first-order CASSCF method based on the renormalized Fock-operator technique
,”
Theor. Chim. Acta
76
,
95
111
(
1989
).
47.
J.
Wasilewski
, “
Graphical techniques in the configuration interaction approach based on pure slater determinants
,”
Int. J. Quantum Chem.
36
,
503
524
(
1989
).
48.
REMP-enhanced fork of the psi4 repository,
2022
.
49.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
50.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
51.
TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, available at http://www.turbomole.com,
2013
.
52.
F.
Pawłowski
,
P.
Jørgensen
,
J.
Olsen
,
F.
Hegelund
,
T.
Helgaker
,
J.
Gauss
,
K. L.
Bak
, and
J. F.
Stanton
, “
Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants
,”
J. Chem. Phys.
116
,
6482
6496
(
2002
).
53.
C. E.
Warden
,
D. G. A.
Smith
,
L. A.
Burns
,
U.
Bozkaya
, and
C. D.
Sherrill
, “
Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory
,”
J. Chem. Phys.
152
,
124109
(
2020
).
54.
F. J.
Lovas
,
E.
Tiemann
,
J. S.
Coursey
,
S. A.
Kotochigova
,
J.
Chang
,
v.
Olsen
, and
R. A.
Dragoset
, Diatomic spectral database–NIST standard reference database 114,
2005
.
55.
P. R.
Tentscher
and
J. S.
Arey
, “
Geometries and vibrational frequencies of small radicals: Performance of coupled cluster and more approximate methods
,”
J. Chem. Theory Comput.
8
,
2165
2179
(
2012
).
56.
P.
Jensen
and
P. R.
Bunker
, “
The potential surface and stretching frequencies of X̃3B1 methylene (CH2) determined from experiment using the morse oscillator-rigid bender internal dynamics Hamiltonian
,”
J. Chem. Phys.
89
,
1327
1332
(
1988
).
57.
E. F. C.
Byrd
,
C. D.
Sherrill
, and
M.
Head-Gordon
, “
The theoretical prediction of molecular radical species: A systematic study of equilibrium geometries and harmonic vibrational frequencies
,”
J. Phys. Chem. A
105
,
9736
9747
(
2001
).
58.
J. A.
Coxon
and
P. G.
Hajigeorgiou
, “
On the direct determination of analytical diatomic potential energy functions from spectroscopic data: The X 1+ electronic states of NaF, LiI, CS, and SiS
,”
Chem. Phys.
167
,
327
340
(
1992
).
59.
J. H.
Baraban
,
P. B.
Changala
, and
J. F.
Stanton
, “
The equilibrium structure of hydrogen peroxide
,”
J. Mol. Spectrosc.
343
,
92
95
(
2018
).
60.
P.
Turner
and
I.
Mills
, “
The infrared spectrum, equilibrium structure and harmonic and anharmonic force field of thioborine, HBS
,”
Mol. Phys.
46
,
161
170
(
1982
).
61.
S.
Coriani
,
D.
Marchesan
,
J.
Gauss
,
C.
Hättig
,
T.
Helgaker
, and
P.
Jørgensen
, “
The accuracy of ab initio molecular geometries for systems containing second-row atoms
,”
J. Chem. Phys.
123
,
184107
(
2005
).
62.
D. M.
Bittner
and
P. F.
Bernath
, “
Line lists for LiF and LiCl in the X1Σ+ ground state
,”
Astrophys. J., Suppl. Ser.
235
,
8
(
2018
).
63.
K.
Kobayashi
and
S.
Saito
, “
The microwave spectrum of the NF radical in the second electronically excited (b1Σ+) state: Potentials of three low-lying states (X3Σ,a1Δ,b1Σ+)
,”
J. Chem. Phys.
108
,
6606
6610
(
1998
).
64.
M.
Melosso
,
L.
Bizzocchi
,
F.
Tamassia
,
C.
Degli Esposti
,
E.
Canè
, and
L.
Dore
, “
The rotational spectrum of 15ND. Isotopic-independent Dunham-type analysis of the imidogen radical
,”
Phys. Chem. Chem. Phys.
21
,
3564
3573
(
2019
).
65.
Y.
Morino
,
M.
Tanimoto
,
S.
Saito
,
E.
Hirota
,
R.
Awata
, and
T.
Tanaka
, “
Microwave spectrum of nitrogen dioxide in excited vibrational states—Equilibrium structure
,”
J. Mol. Spectrosc.
98
,
331
348
(
1983
).
66.
NIST Standard Reference Database 69: NIST Chemistry Webbook
(
National Institute of Standards and Technology
,
2022
).
67.
J.-G.
Lahaye
,
R.
Vandenhaute
, and
A.
Fayt
, “
CO2 laser saturation Stark spectra and global rovibrational analysis of the main isotopic species of carbonyl sulfide (OC34S, O13CS, and 18OCS)
,”
J. Mol. Spectrosc.
123
,
48
83
(
1987
).
68.
D. A.
Helms
and
W.
Gordy
, “
‘Forbidden’ rotational spectra of symmetric-top molecules: PH3 and PD3
,”
J. Mol. Spectrosc.
66
,
206
218
(
1977
).
69.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
9646
(
1997
).
70.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure
(
Springer
,
Boston, MA
,
1979
), p.
716
.
71.
W. D.
Anderson
,
M. C. L.
Gerry
, and
R. W.
Davis
, “
The microwave spectrum of isotopically substituted hypochlorous acid: Determination of the molecular structure
,”
J. Mol. Spectrosc.
115
,
117
130
(
1986
).
72.
T. H.
Edwards
,
N. K.
Moncur
, and
L. E.
Snyder
, “
Ground-state molecular constants of hydrogen sulfide
,”
J. Chem. Phys.
46
,
2139
2142
(
1967
).
73.
P. G.
Szalay
,
L. S.
Thøgersen
,
J.
Olsen
,
M.
Kállay
, and
J.
Gauss
, “
Equilibrium geometry of the ethynyl (CCH) radical
,”
J. Phys. Chem. A
108
,
3030
3034
(
2004
).
74.
J.
Chen
and
P. J.
Dagdigian
, “
The DNF Ã2A-X̃2A band system: Rotational analysis of the origin band and partial analysis of several higher bands
,”
J. Mol. Spectrosc.
162
,
152
167
(
1993
).
75.
J.
Vázquez
and
J. F.
Stanton
, “
Theoretical investigation of the structure and vibrational spectrum of the electronic ground state X̃(1A′) of HSiCl
,”
J. Phys. Chem. A
106
,
4429
4434
(
2002
).
76.
J.
Demaison
,
L.
Margulès
, and
J. E.
Boggs
, “
Equilibrium structure and force field of NH2
,”
Phys. Chem. Chem. Phys.
5
,
3359
3363
(
2003
).
77.
C.
Yamada
,
H.
Kanamori
,
E.
Hirota
,
N.
Nishiwaki
,
N.
Itabashi
,
K.
Kato
, and
T.
Goto
, “
Detection of the silylene V2 band by infrared diode laser kinetic spectroscopy
,”
J. Chem. Phys.
91
,
4582
4586
(
1989
).
78.
V.
Meyer
,
D. H.
Sutter
, and
H.
Dreizler
, “
The centrifugally induced pure rotational spectrum and the structure of sulfur trioxide. A microwave Fourier transform study of a nonpolar molecule
,”
Z. Naturforsch., A
46
,
710
714
(
1991
).
79.
H.
Lew
and
I.
Heiber
, “
Spectrum of H2O+
,”
J. Chem. Phys.
58
,
1246
1247
(
1973
).
80.
J. M.
Brown
and
D. A.
Ramsay
, “
Axis switching in the transition of HCO: Determination of molecular geometry
,”
Can. J. Phys.
53
,
2232
2241
(
1975
).
81.
Y.
Beers
and
C. J.
Howard
, “
The spectrum of DO2 near 60 GHz and the structure of the hydroperoxyl radical
,”
J. Chem. Phys.
64
,
1541
1543
(
1976
).
82.
J. S.
Coursey
,
D. J.
Schwab
,
J. J.
Tsai
, and
R. A.
Dragoset
, “
Atomic weights and isotopic compositions (version 4.1)
,” National Institute of Standards and Technology, Gaithersburg, MD; Available at http://physics.nist.gov/Com.
83.
K. K.
Irikura
, “
Experimental vibrational zero-point energies: Diatomic molecules
,”
J. Phys. Chem. Ref. Data
36
,
389
397
(
2007
).
84.
W. S.
Benedict
,
N.
Gailar
, and
E. K.
Plyler
, “
Rotation-vibration spectra of deuterated water vapor
,”
J. Chem. Phys.
24
,
1139
1165
(
1956
).
85.
P. R.
Herman
,
P. E.
LaRocque
, and
B. P.
Stoicheff
, “
Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of AR2 and constants of the ground and excited states
,”
J. Chem. Phys.
89
,
4535
4549
(
1988
).
86.
R. L.
Cook
,
F. C.
De Lucia
, and
P.
Helminger
, “
Molecular force field and structure of hydrogen sulfide: Recent microwave results
,”
J. Mol. Struct.
28
,
237
246
(
1975
).
87.
G.
Strey
and
I. M.
Mills
, “
Anharmonic force field of acetylene
,”
J. Mol. Spectrosc.
59
,
103
115
(
1976
).
88.
W.
Quapp
, “
A redefined anharmonic potential energy surface of HCN
,”
J. Mol. Spectrosc.
125
,
122
127
(
1987
).
89.
J. L.
Duncan
,
D. C.
McKean
, and
P. D.
Mallinson
, “
Infrared crystal spectra of C2H4, C2D4, and as-C2H2D2 and the general harmonic force field of ethylene
,”
J. Mol. Spectrosc.
45
,
221
246
(
1973
).
90.
H.
Müller
,
R.
Franke
,
S.
Vogtner
,
R.
Jaquet
, and
W.
Kutzelnigg
, “
Toward spectroscopic accuracy of ab initio calculations of vibrational frequencies and related quantities: A case study of the HF molecule
,”
Theor. Chem. Acc.
100
,
85
102
(
1998
).
91.
M. M.
Wohar
and
P. W.
Jagodzinski
, “
Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational force fields
,”
J. Mol. Spectrosc.
148
,
13
19
(
1991
).
92.
G. E.
Scuseria
,
A. C.
Scheiner
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
 III
, “
Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: A comparison with configuratiheraction (CCSD, CISDT, and CISDTQ) results for the harmonic vibrational frequencies, infrared intensities, dipole moment, and inversion barrier of ammonia
,”
Int. J. Quantum Chem.
32
,
495
501
(
1987
).
93.
T. J.
Lee
,
J. M. L.
Martin
, and
P. R.
Taylor
, “
An accurate ab initio quartic force field and vibrational frequencies for CH4 and isotopomers
,”
J. Chem. Phys.
102
,
254
261
(
1995
).
94.
E.
Hirota
and
H.
Ishikawa
, “
The vibrational spectrum and molecular constants of silicon dihydride SiH2 in the ground electronic state
,”
J. Chem. Phys.
110
,
4254
4257
(
1999
).
95.
F.
Pawłowski
,
A.
Halkier
,
P.
Jørgensen
,
K. L.
Bak
,
T.
Helgaker
, and
W.
Klopper
, “
Accuracy of spectroscopic constants of diatomic molecules from ab initio calculations
,”
J. Chem. Phys.
118
,
2539
2549
(
2003
).
96.
F.
Wennmohs
and
F.
Neese
, “
A comparative study of single reference correlation methods of the coupled-pair type
,”
Chem. Phys.
343
,
217
230
(
2008
).
97.
U.
Bozkaya
, “
Analytic energy gradients for the orbital-optimized third-order Møller–Plesset perturbation theory
,”
J. Chem. Phys.
139
,
104116
(
2013
).
98.
T.
Bodenstein
and
S.
Kvaal
, “
A state-specific multireference coupled-cluster method based on the bivariational principle
,”
J. Chem. Phys.
153
,
024106
(
2020
).
99.
D.
Hait
and
M.
Head-Gordon
, “
How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values
,”
J. Chem. Theory Comput.
14
,
1969
1981
(
2018
).
100.
U.
Bozkaya
,
E.
Soydaş
, and
B.
Filiz
, “
State-of-the-art computations of dipole moments using analytic gradients of high-level density-fitted coupled-cluster methods with focal-point approximations
,”
J. Comput. Chem.
41
,
769
779
(
2020
).
101.
R.
Sarkar
,
M.
Boggio-Pasqua
,
P.-F.
Loos
, and
D.
Jacquemin
, “
Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments
,”
J. Chem. Theory Comput.
17
,
1117
1132
(
2021
).
102.
R. F.
Fink
, “
Spin-component-scaled Møller–Plesset (SCS-MP) perturbation theory: A generalization of the MP approach with improved properties
,”
J. Chem. Phys.
133
,
174113
(
2010
).
103.
H. R.
Larsson
,
H.
Zhai
,
K.
Gunst
, and
G. K.-L.
Chan
, “
Matrix product states with large sites
,”
J. Chem. Theory Comput.
18
,
749
762
(
2022
).
104.
M.
Saitow
and
T.
Yanai
, “
A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework
,”
J. Chem. Phys.
152
,
114111
(
2020
).
105.
S.
Sharma
,
G.
Knizia
,
S.
Guo
, and
A.
Alavi
, “
Combining internally contracted states and matrix product states to perform multireference perturbation theory
,”
J. Chem. Theory Comput.
13
,
488
498
(
2017
).
106.
G.
Jeanmairet
,
S.
Sharma
, and
A.
Alavi
, “
Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method
,”
J. Chem. Phys.
146
,
044107
(
2017
).
107.
P.
Celani
and
H.-J.
Werner
, “
Multireference perturbation theory for large restricted and selected active space reference wave functions
,”
J. Chem. Phys.
112
,
5546
5557
(
2000
).
108.
P.
Celani
and
H.-J.
Werner
, “
Analytical energy gradients for internally contracted second-order multireference perturbation theory
,”
J. Chem. Phys.
119
,
5044
5057
(
2003
).
109.
Y.
Nishimoto
,
S.
Battaglia
, and
R.
Lindh
, “
Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2 methods
,”
J. Chem. Theory Comput.
18
,
4269
(
2022
).
110.
J. W.
Park
, “
Analytical gradient theory for strongly contracted (SC) and partially contracted (PC) N-electron valence state perturbation theory (NEVPT2)
,”
J. Chem. Theory Comput.
15
,
5417
5425
(
2019
).

Supplementary Material

You do not currently have access to this content.