Catalytically active macromolecules are envisioned as key building blocks in the development of artificial nanomotors. However, theory and experiments report conflicting findings regarding their dynamics. The lack of consensus is mostly caused by the limited understanding of the specifics of self-propulsion mechanisms at the nanoscale. Here, we study a generic model of a self-propelled nanoparticle that does not rely on a particular mechanism. Instead, its main assumption is the fundamental symmetry of microscopic dynamics of chemical reactions: the principle of microscopic reversibility. Significant consequences of this assumption arise if we subject the particle to the action of an external time-periodic force. The particle diffusion coefficient then becomes enhanced compared to the unbiased dynamics. The enhancement can be controlled by the force amplitude and frequency. We also derive the power spectrum of particle trajectories. Among the new effects stemming from the microscopic reversibility are the enhancement of the spectrum at all frequencies and sigmoid-shaped transitions and a peak at characteristic frequencies of rotational diffusion and external forcing. Microscopic reversibility is a generic property of a broad class of chemical reactions. Therefore, we expect that the presented results will motivate new experimental studies aimed at testing our predictions. This could provide new insights into the dynamics of catalytic macromolecules.

1.
S.
Sánchez
,
L.
Soler
, and
J.
Katuri
, “
Chemically powered micro- and nanomotors
,”
Angew. Chem., Int. Ed.
54
,
1414
(
2015
).
2.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
3.
S.
Ramaswamy
, “
Active matter
,”
J. Stat. Mech.
2017
,
054002
.
4.
J.
Zhang
,
E.
Luijten
,
B. A.
Grzybowski
, and
S.
Granick
, “
Active colloids with collective mobility status and research opportunities
,”
Chem. Soc. Rev.
46
,
5551
5569
(
2017
).
5.
S.
Palagi
and
P.
Fischer
, “
Bioinspired microrobots
,”
Nat. Rev. Mater.
3
,
113
124
(
2018
).
6.
F.
Soto
,
E.
Karshalev
,
F.
Zhang
,
B.
Esteban Fernandez de Avila
,
A.
Nourhani
, and
J.
Wang
, “
Smart materials for microrobots
,”
Chem. Rev.
122
,
5365
5403
(
2022
).
7.
S.
Muiños-Landin
,
A.
Fischer
,
V.
Holubec
, and
F.
Cichos
, “
Reinforcement learning with artificial microswimmers
,”
Sci. Rob.
6
,
eabd9285
(
2021
).
8.
D.
Patra
,
S.
Sengupta
,
W.
Duan
,
H.
Zhang
,
R.
Pavlick
, and
A.
Sen
, “
Intelligent, self-powered, drug delivery systems
,”
Nanoscale
5
,
1273
(
2013
).
9.
H.
Xu
,
M.
Medina-Sánchez
,
M. F.
Maitz
,
C.
Werner
, and
O. G.
Schmidt
, “
Sperm micromotors for cargo delivery through flowing blood
,”
ACS Nano
14
,
2982
(
2020
).
10.
M. J.
Mitchell
,
M. M.
Billingsley
,
R. M.
Haley
,
M. E.
Wechsler
,
N. A.
Peppas
, and
R.
Langer
, “
Engineering precision nanoparticles for drug delivery
,”
Nat. Rev. Drug Discovery
20
,
101
124
(
2021
).
11.
L.
Baraban
,
M.
Tasinkevych
,
M. N.
Popescu
,
S.
Sanchez
,
S.
Dietrich
, and
O. G.
Schmidt
, “
Transport of cargo by catalytic Janus micro-motors
,”
Soft Matter
8
,
48
(
2012
).
12.
L.
Soler
,
V.
Magdanz
,
V. M.
Fomin
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Self-propelled micromotors for cleaning polluted water
,”
ACS Nano
7
,
9611
(
2013
).
13.
L.
Soler
and
S.
Sánchez
, “
Catalytic nanomotors for environmental monitoring and water remediation
,”
Nanoscale
6
,
7175
(
2014
).
14.
D.
Vilela
,
M.
Guix
,
J.
Parmar
,
Á.
Blanco-Blanes
, and
S.
Sánchez
, “
Micromotor-in-sponge platform for multicycle large-volume degradation of organic pollutants
,”
Small
18
,
2107619
(
2022
).
15.
J.
Wu
,
S.
Balasubramanian
,
D.
Kagan
,
K. M.
Manesh
,
S.
Campuzano
, and
J.
Wang
, “
Motion-based DNA detection using catalytic nanomotors
,”
Nat. Commun.
1
,
36
(
2010
).
16.
W.
Wang
,
S.
Li
,
L.
Mair
,
S.
Ahmed
,
T. J.
Huang
, and
T. E.
Mallouk
, “
Acoustic propulsion of nanorod motors inside living cells
,”
Angew. Chem., Int. Ed.
53
,
3201
3204
(
2014
).
17.
H. S.
Muddana
,
S.
Sengupta
,
T. E.
Mallouk
,
A.
Sen
, and
P. J.
Butler
, “
Substrate catalysis enhances single-enzyme diffusion
,”
J. Am. Chem. Soc.
132
,
2110
2111
(
2010
).
18.
S.
Sengupta
,
K. K.
Dey
,
H. S.
Muddana
,
T.
Tabouillot
,
M. E.
Ibele
,
P. J.
Butler
, and
A.
Sen
, “
Enzyme molecules as nanomotors
,”
J. Am. Chem. Soc.
135
,
1406
1414
(
2013
).
19.
S.
Sengupta
,
M. M.
Spiering
,
K. K.
Dey
,
W.
Duan
,
D.
Patra
,
P. J.
Butler
,
R. D.
Astumian
,
S. J.
Benkovic
, and
A.
Sen
, “
DNA polymerase as a molecular motor and pump
,”
ACS Nano
8
,
2410
2418
(
2014
).
20.
A.-Y.
Jee
,
S.
Dutta
,
Y.-K.
Cho
,
T.
Tlusty
, and
S.
Granick
, “
Enzyme leaps fuel antichemotaxis
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
14
18
(
2018
).
21.
A.-Y.
Jee
,
Y.-K.
Cho
,
S.
Granick
, and
T.
Tlusty
, “
Catalytic enzymes are active matter
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E10812
(
2018
).
22.
A.-Y.
Jee
,
T.
Tlusty
, and
S.
Granick
, “
Master curve of boosted diffusion for 10 catalytic enzymes
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
29435
29441
(
2020
).
23.
H.
Yuan
,
X.
Liu
,
L.
Wang
, and
X.
Ma
, “
Fundamentals and applications of enzyme powered micro/nano-motors
,”
Bioact. Mater.
6
,
1727
1749
(
2021
).
24.
Y.
Zhang
and
H.
Hess
, “
Enhanced diffusion of catalytically active enzymes
,”
ACS Cent. Sci.
5
,
939
948
(
2019
).
25.
R.
Golestanian
, “
Enhanced diffusion of enzymes that catalyze exothermic reactions
,”
Phys. Rev. Lett.
115
,
108102
(
2015
).
26.
P.
Illien
,
X.
Zhao
,
K. K.
Dey
,
P. J.
Butler
,
A.
Sen
, and
R.
Golestanian
, “
Exothermicity is not a necessary condition for enhanced diffusion of enzymes
,”
Nano Lett.
17
,
4415
4420
(
2017
).
27.
J.
Agudo-Canalejo
,
P.
Illien
, and
R.
Golestanian
, “
Phoresis and enhanced diffusion compete in enzyme chemotaxis
,”
Nano Lett.
18
,
2711
2717
(
2018
).
28.
J.
Agudo-Canalejo
,
T.
Adeleke-Larodo
,
P.
Illien
, and
R.
Golestanian
, “
Enhanced diffusion and chemotaxis at the nanoscale
,”
Acc. Chem. Res.
51
,
2365
(
2018
).
29.
S.
Kondrat
and
M. N.
Popescu
, “
Brownian dynamics assessment of enhanced diffusion exhibited by ‘fluctuating-dumbbell enzymes
,’”
Phys. Chem. Chem. Phys.
21
,
18811
18815
(
2019
).
30.
H.
Wang
,
T.
Huang
, and
S.
Granick
, “
Using NMR to test molecular mobility during a chemical reaction
,”
J. Phys. Chem. Lett.
12
,
2370
2375
(
2021
).
31.
J.-P.
Günther
,
G.
Majer
, and
P.
Fischer
, “
Absolute diffusion measurements of active enzyme solutions by NMR
,”
J. Chem. Phys.
150
,
124201
(
2019
).
32.
H.
Wang
,
M.
Park
,
R.
Dong
,
J.
Kim
,
Y.-K.
Cho
,
T.
Tlusty
, and
S.
Granick
, “
Boosted molecular mobility during common chemical reactions
,”
Science
369
,
537
541
(
2020
).
33.
J.-P.
Günther
,
L. L.
Fillbrook
,
T. S. C.
MacDonald
,
G.
Majer
,
W. S.
Price
,
P.
Fischer
, and
J. E.
Beves
, “
Comment on ‘Boosted molecular mobility during common chemical reactions
,’”
Science
371
,
eabe8322
(
2021
).
34.
H.
Wang
,
M.
Park
,
R.
Dong
,
J.
Kim
,
Y.-K.
Cho
,
T.
Tlusty
, and
S.
Granick
, “
Response to comment on ‘Boosted molecular mobility during common chemical reactions
,’”
Science
371
,
eabe8678
(
2021
).
35.
M.
Feng
and
M. K.
Gilson
, “
Enhanced diffusion and chemotaxis of enzymes
,”
Annu. Rev. Biophys.
49
,
87
105
(
2020
).
36.
R. C.
Tolman
, “
The principle of microscopic reversibility
,”
Proc. Natl. Acad. Sci. U. S. A.
11
,
436
439
(
1925
).
37.
A.
Ryabov
and
M.
Tasinkevych
, “
Enhanced diffusivity in microscopically reversible active matter
,”
Soft Matter
18
,
3234
3240
(
2022
).
38.
Y.
Han
,
A. M.
Alsayed
,
M.
Nobili
,
J.
Zhang
,
T. C.
Lubensky
, and
A. G.
Yodh
, “
Brownian motion of an ellipsoid
,”
Science
314
,
626
630
(
2006
).
39.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
426
(
1931
).
40.
L.
Onsager
and
S.
Machlup
, “
Fluctuations and irreversible processes
,”
Phys. Rev.
91
,
1505
(
1953
).
41.
R. D.
Astumian
, “
Optical vs. chemical driving for molecular machines
,”
Faraday Discuss.
195
,
583
597
(
2016
).
42.
C.
Maes
, “
Local detailed balance
,”
SciPost Phys. Lect. Notes
2021
,
32
.
43.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford
,
2001
).
44.
R.
Metzler
,
J.-H.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
24164
(
2014
).
45.
Z.
Chen
,
A.
Shaw
,
H.
Wilson
,
M.
Woringer
,
X.
Darzacq
,
S.
Marqusee
,
Q.
Wang
, and
C.
Bustamante
, “
Single-molecule diffusometry reveals no catalysis-induced diffusion enhancement of alkaline phosphatase as proposed by FCS experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
21328
21335
(
2020
).
46.
R.
Evans
, “
The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy
,”
Prog. Nucl. Magn. Reson. Spectrosc.
117
,
33
69
(
2020
).
47.
J.
Kärger
,
M.
Avramovska
,
D.
Freude
,
J.
Haase
,
S.
Hwang
, and
R.
Valiullin
, “
Pulsed field gradient NMR diffusion measurement in nanoporous materials
,”
Adsorption
27
,
453
484
(
2021
).
48.
H.
Jobic
and
D. N.
Theodorou
, “
Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites
,”
Microporous Mesoporous Mater.
102
,
21
50
(
2007
).
49.
A.
Ryabov
,
M.
Žonda
, and
T.
Novotný
, “
Phase diffusion and noise temperature of a microwave amplifier based on single unshunted Josephson junction
,”
Commun. Nonlinear Sci. Numer. Simul.
112
,
106523
(
2022
).
50.
U.
Erdmann
,
W.
Ebeling
,
L.
Schimansky-Geier
, and
F.
Schweitzer
, “
Brownian particles far from equilibrium
,”
Eur. Phys. J. B
15
,
105
113
(
2000
).
51.
B.
Szabó
,
G. J.
Szöllösi
,
B.
Gönci
,
Z.
Jurányi
,
D.
Selmeczi
, and
T.
Vicsek
, “
Phase transition in the collective migration of tissue cells: Experiment and model
,”
Phys. Rev. E
74
,
061908
(
2006
).
52.
F.
Peruani
and
L. G.
Morelli
, “
Self-propelled particles with fluctuating speed and direction of motion in two dimensions
,”
Phys. Rev. Lett.
99
,
010602
(
2007
).
53.
S.
van Teeffelen
and
H.
Löwen
, “
Dynamics of a Brownian circle swimmer
,”
Phys. Rev. E
78
,
020101
(
2008
).
54.
B.
ten Hagen
,
S.
van Teeffelen
, and
H.
Löwen
, “
Brownian motion of a self-propelled particle
,”
J. Phys.: Condens. Matter
23
,
194119
(
2011
).
55.
S.
Henkes
,
Y.
Fily
, and
M. C.
Marchetti
, “
Active jamming: Self-propelled soft particles at high density
,”
Phys. Rev. E
84
,
040301
(
2011
).
56.
J.
Bialké
,
T.
Speck
, and
H.
Löwen
, “
Crystallization in a dense suspension of self-propelled particles
,”
Phys. Rev. Lett.
108
,
168301
(
2012
).
57.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
, “
Active Brownian particles
,”
Eur. Phys. J.: Spec. Top.
202
,
1
162
(
2012
).
58.
A.
Pototsky
and
H.
Stark
, “
Active Brownian particles in two-dimensional traps
,”
Europhys. Lett.
98
,
50004
(
2012
).
59.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
, “
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles
,”
Phys. Rev. Lett.
110
,
238301
(
2013
).
60.
X.
Yang
,
M. L.
Manning
, and
M. C.
Marchetti
, “
Aggregation and segregation of confined active particles
,”
Soft Matter
10
,
6477
6484
(
2014
).
61.
J.
Stenhammar
,
D.
Marenduzzo
,
R. J.
Allen
, and
M. E.
Cates
, “
Phase behaviour of active Brownian particles: The role of dimensionality
,”
Soft Matter
10
,
1489
1499
(
2014
).
62.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
63.
S.
Das
,
G.
Gompper
, and
R. G.
Winkler
, “
Confined active Brownian particles: Theoretical description of propulsion-induced accumulation
,”
New J. Phys.
20
,
015001
(
2018
).
64.
K.
Malakar
,
A.
Das
,
A.
Kundu
,
K. V.
Kumar
, and
A.
Dhar
, “
Steady state of an active Brownian particle in a two-dimensional harmonic trap
,”
Phys. Rev. E
101
,
022610
(
2020
).
65.
D.
Chaudhuri
and
A.
Dhar
, “
Active Brownian particle in harmonic trap: Exact computation of moments, and re-entrant transition
,”
J. Stat. Mech.
2021
,
013207
.
66.
P.
Pietzonka
and
U.
Seifert
, “
Entropy production of active particles and for particles in active baths
,”
J. Phys. A: Math. Theor.
51
,
01LT01
(
2018
).
67.
T.
Speck
, “
Active Brownian particles driven by constant affinity
,”
Europhys. Lett.
123
,
20007
(
2018
).
68.
U.
Seifert
, “
Stochastic thermodynamics of single enzymes and molecular motors
,”
Eur. Phys. J. E
34
,
26
(
2011
).
69.
T.
Speck
, “
Modeling of biomolecular machines in non-equilibrium steady states
,”
J. Chem. Phys.
155
,
230901
(
2021
).
70.
T.
Speck
, “
Thermodynamic approach to the self-diffusiophoresis of colloidal Janus particles
,”
Phys. Rev. E
99
,
060602
(
2019
).
71.
A.
Fischer
,
A.
Chatterjee
, and
T.
Speck
, “
Aggregation and sedimentation of active Brownian particles at constant affinity
,”
J. Chem. Phys.
150
,
064910
(
2019
).
72.
P.
Pietzonka
,
E.
Fodor
,
C.
Lohrmann
,
M. E.
Cates
, and
U.
Seifert
, “
Autonomous engines driven by active matter: Energetics and design principles
,”
Phys. Rev. X
9
,
041032
(
2019
).
73.
T.
Speck
, “
Efficiency of isothermal active matter engines: Strong driving beats weak driving
,”
Phys. Rev. E
105
,
L012601
(
2022
).
74.
P.
Gaspard
and
R.
Kapral
, “
Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors
,”
J. Chem. Phys.
147
,
211101
(
2017
).
75.
P.
Gaspard
and
R.
Kapral
, “
Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles
,”
J. Chem. Phys.
148
,
134104
(
2018
).
76.
M.-J.
Huang
,
J.
Schofield
,
P.
Gaspard
, and
R.
Kapral
, “
Dynamics of Janus motors with microscopically reversible kinetics
,”
J. Chem. Phys.
149
,
024904
(
2018
).
77.
P.
Gaspard
and
R.
Kapral
, “
The stochastic motion of self-thermophoretic Janus particles
,”
J. Stat. Mech.
2019
,
074001
.
78.
P.
Gaspard
and
R.
Kapral
, “
Thermodynamics and statistical mechanics of chemically powered synthetic nanomotors
,”
Adv. Phys.: X
4
,
1602480
(
2019
).
79.
P.
Gaspard
and
R.
Kapral
, “
Active matter, microreversibility, and thermodynamics
,”
Research
2020
,
9739231
.
80.
M.
De Corato
and
I.
Pagonabarraga
, “
Onsager reciprocal relations and chemo-mechanical coupling for chemically active colloids
,”
J. Chem. Phys.
157
,
084901
(
2022
).
81.
S.
De Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
, Dover Books on Physics (
Dover Publications
,
2013
).
82.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
83.
G.
Dunderdale
,
S.
Ebbens
,
P.
Fairclough
, and
J.
Howse
, “
Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes
,”
Langmuir
28
,
10997
11006
(
2012
).
84.
T.
Patiño
,
X.
Arqué
,
R.
Mestre
,
L.
Palacios
, and
S.
Sánchez
, “
Fundamental aspects of enzyme-powered micro- and nanoswimmers
,”
Acc. Chem. Res.
51
,
2662
2671
(
2018
).
85.
D.
Krapf
,
E.
Marinari
,
R.
Metzler
,
G.
Oshanin
,
X.
Xu
, and
A.
Squarcini
, “
Power spectral density of a single Brownian trajectory: What one can and cannot learn from it
,”
New J. Phys.
20
,
023029
(
2018
).
86.
A.
Squarcini
,
A.
Solon
, and
G.
Oshanin
, “
Spectral density of individual trajectories of an active Brownian particle
,”
New J. Phys.
24
,
013018
(
2022
).
You do not currently have access to this content.