Plasmonic systems, such as metal nanoparticles, are widely used in different areas of application, going from biology to photovoltaics. The modeling of the optical response of such systems is of fundamental importance to analyze their behavior and to design new systems with required properties. When the characteristic sizes/distances reach a few nanometers, nonlocal and spill-out effects become relevant and conventional classical electrodynamics models are no more appropriate. Methods based on the Time-Dependent Density Functional Theory (TD-DFT) represent the current reference for the description of quantum effects. However, TD-DFT is based on knowledge of all occupied orbitals, whose calculation is computationally prohibitive to model large plasmonic systems of interest for applications. On the other hand, methods based on the orbital-free (OF) formulation of TD-DFT can scale linearly with the system size. In this Review, OF methods ranging from semiclassical models to the Quantum Hydrodynamic Theory will be derived from the linear response TD-DFT, so that the key approximations and properties of each method can be clearly highlighted. The accuracy of the various approximations will then be validated for the linear optical properties of jellium nanoparticles, the most relevant model system in plasmonics. OF methods can describe the collective excitations in plasmonic systems with great accuracy and without system-tuned parameters. The accuracy of these methods depends only on the accuracy of the (universal) kinetic energy functional of the ground-state electronic density. Current approximations and future development directions will also be indicated.

1.
S. A.
Maier
,
Plasmonics, Fundamentals and Applications
(
Springer
,
2007
).
2.
S.
Kawata
,
Y.
Inouye
, and
P.
Verma
, “
Plasmonics for near-field nano-imaging and superlensing
,”
Nat. Photonics
3
,
388
(
2009
).
3.
Modern Plasmonics
, Handbook of Surface Science Vol. 4, edited by
A. A.
Maradudin
,
J. R.
Sambles
, and
W. L.
Barnes
(
Elsevier
,
Amsterdam
,
2014
).
4.
F.
Della Sala
and
S.
D’Agostino
,
Handbook of Molecular Plasmonics
(
CRC Press
,
2013
).
5.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
,
205
213
(
2010
).
6.
A. G.
Brolo
, “
Plasmonics for future biosensors
,”
Nat. Photonics
6
,
709
713
(
2012
).
7.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
, “
Plasmon-induced hot carrier science and technology
,”
Nat. Nanotechnol.
10
,
25
(
2015
).
8.
G. V.
Naik
,
V. M.
Shalaev
, and
A.
Boltasseva
, “
Alternative plasmonic materials: Beyond gold and silver
,”
Adv. Mater.
25
,
3264
3294
(
2013
).
9.
A. N.
Grigorenko
,
M.
Polini
, and
K. S.
Novoselov
, “
Graphene plasmonics
,”
Nat. Photonics
6
,
749
758
(
2012
).
10.
A.
Agrawal
,
S. H.
Cho
,
O.
Zandi
,
S.
Ghosh
,
R. W.
Johns
, and
D. J.
Milliron
, “
Localized surface plasmon resonance in semiconductor nanocrystals
,”
Chem. Rev.
118
,
3121
3207
(
2018
).
11.
X.
Liu
and
M. T.
Swihart
, “
Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials
,”
Chem. Soc. Rev.
43
,
3908
3920
(
2014
).
12.
U.
Guler
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Refractory plasmonics
,”
Science
344
,
263
264
(
2014
).
13.
J.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1999
).
14.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
15.
M. I.
Mishchenko
,
L. D.
Travis
, and
A. A.
Lacis
,
Scattering, Absorption, and Emission of Light by Small Particles
(
Cambridge University Press
,
2002
).
16.
W.
Zhu
,
R.
Esteban
,
A. G.
Borisov
,
J. J.
Baumberg
,
P.
Nordlander
,
H. J.
Lezec
,
J.
Aizpurua
, and
K. B.
Crozier
, “
Quantum mechanical effects in plasmonic structures with subnanometre gaps
,”
Nat. Commun.
7
,
11495
(
2016
).
17.
R.
Esteban
,
A. G.
Borisov
,
P.
Nordlander
, and
J.
Aizpurua
, “
Bridging quantum and classical plasmonics with a quantum-corrected model
,”
Nat. Commun.
3
,
825
(
2012
).
18.
Y.
Luo
,
A. I.
Fernandez-Dominguez
,
A.
Wiener
,
S. A.
Maier
, and
J. B.
Pendry
, “
Surface plasmons and nonlocality: A simple model
,”
Phys. Rev. Lett.
111
,
093901
(
2013
).
19.
W.
Yan
,
M.
Wubs
, and
N.
Asger Mortensen
, “
Projected dipole model for quantum plasmonics
,”
Phys. Rev. Lett.
115
,
137403
(
2015
).
20.
T.
Christensen
,
W.
Yan
,
A.-P.
Jauho
,
M.
Soljačić
, and
N. A.
Mortensen
, “
Quantum corrections in nanoplasmonics: Shape, scale, and material
,”
Phys. Rev. Lett.
118
,
157402
(
2017
).
21.
Y.
Yang
,
D.
Zhu
,
W.
Yan
,
A.
Agarwal
,
M.
Zheng
,
J. D.
Joannopoulos
,
P.
Lalanne
,
T.
Christensen
,
K. K.
Berggren
, and
M.
Soljačić
, “
A general theoretical and experimental framework for nanoscale electromagnetism
,”
Nature
576
,
248
252
(
2019
).
22.
N. A.
Mortensen
, “
Mesoscopic electrodynamics at metal surfaces—From quantum-corrected hydrodynamics to microscopic surface-response formalism
,”
Nanophotonics
10
,
2563
2616
(
2021
).
23.
X.
Chen
,
P.
Liu
, and
L.
Jensen
, “
Atomistic electrodynamics simulations of plasmonic nanoparticles
,”
J. Phys. D: Appl. Phys.
52
,
363002
(
2019
).
24.
L.
Bonatti
,
G.
Gil
,
T.
Giovannini
,
S.
Corni
, and
C.
Cappelli
, “
Plasmonic resonances of metal nanoparticles: Atomistic vs continuum approaches
,”
Front. Chem.
8
,
340
(
2020
).
25.
L. L.
Jensen
and
L.
Jensen
, “
Electrostatic interaction model for the calculation of the polarizability of large noble metal nanoclusters
,”
J. Phys. Chem. C
112
,
15697
15703
(
2008
).
26.
L. L.
Jensen
and
L.
Jensen
, “
Atomistic electrodynamics model for optical properties of silver nanoclusters
,”
J. Phys. Chem. C
113
,
15182
15190
(
2009
).
27.
A.
Mayer
,
A. L.
González
,
C. M.
Aikens
, and
G. C.
Schatz
, “
A charge–dipole interaction model for the frequency-dependent polarizability of silver clusters
,”
Nanotechnology
20
,
195204
(
2009
).
28.
S. M.
Morton
and
L.
Jensen
, “
A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption
,”
J. Chem. Phys.
135
,
134103
(
2011
).
29.
X.
Chen
,
J. E.
Moore
,
M.
Zekarias
, and
L.
Jensen
, “
Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime
,”
Nat. Commun.
6
,
8921
(
2015
).
30.
J.
Lim
,
S.
Kang
,
J.
Kim
,
W. Y.
Kim
, and
S.
Ryu
, “
Non-empirical atomistic dipole-interaction-model for quantum plasmon simulation of nanoparticles
,”
Sci. Rep.
7
,
15775
(
2017
).
31.
V. I.
Zakomirnyi
,
Z.
Rinkevicius
,
G. V.
Baryshnikov
,
L. K.
Sørensen
, and
H.
Ågren
, “
Extended discrete interaction model: Plasmonic excitations of silver nanoparticles
,”
J. Phys. Chem. C
123
,
28867
28880
(
2019
).
32.
T.
Giovannini
,
M.
Rosa
,
S.
Corni
, and
C.
Cappelli
, “
A classical picture of subnanometer junctions: An atomistic Drude approach to nanoplasmonics
,”
Nanoscale
11
,
6004
6015
(
2019
).
33.
F.
Bloch
, “
Bremsvermögen von atomen mit mehreren elektronen
,”
Z. Phys.
81
,
363
376
(
1933
).
34.
H.
Jensen
, “
Eigenschwingungen eines Fermi-gases und anwendung auf die Blochsche bremsformel für schnelle teilchen
,”
Z. Phys.
106
,
620
632
(
1937
).
35.
R. H.
Ritchie
and
R. E.
Wilems
, “
Photon-plasmon interaction in a nonuniform electron gas. I
,”
Phys. Rev.
178
,
372
381
(
1969
).
36.
J.
Heinrichs
, “
Hydrodynamic theory of surface-plasmon dispersion
,”
Phys. Rev. B
7
,
3487
3500
(
1973
).
37.
S. C.
Ying
, “
Hydrodynamic response of inhomogeneous metallic systems
,”
Nuovo Cimento B
23
,
270
281
(
1974
).
38.
A.
Eguiluz
, “
Density response function and the dynamic structure factor of thin metal films: Nonlocal effects
,”
Phys. Rev. B
19
,
1689
1705
(
1979
).
39.
G.
Barton
, “
Some surface effects in the hydrodynamic model of metals
,”
Rep. Prog. Phys.
42
,
963
1016
(
1979
).
40.
R.
Ruppin
, “
Optical properties of a plasma sphere
,”
Phys. Rev. Lett.
31
,
1434
1437
(
1973
).
41.
B. B.
Dasgupta
and
R.
Fuchs
, “
Polarizability of a small sphere including nonlocal effects
,”
Phys. Rev. B
24
,
554
561
(
1981
).
42.
C.
Ciracì
,
R. T.
Hill
,
J. J.
Mock
,
Y.
Urzhumov
,
A. I.
Fernández-Domínguez
,
S. A.
Maier
,
J. B.
Pendry
,
A.
Chilkoti
, and
D. R.
Smith
, “
Probing the ultimate limits of plasmonic enhancement
,”
Science
337
,
1072
1074
(
2012
).
43.
K. R.
Hiremath
,
L.
Zschiedrich
, and
F.
Schmidt
, “
Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using nédélec finite elements
,”
J. Comput. Phys.
231
,
5890
5896
(
2012
).
44.
J. M.
McMahon
,
S. K.
Gray
, and
G. C.
Schatz
, “
Nonlocal optical response of metal nanostructures with arbitrary shape
,”
Phys. Rev. Lett.
103
,
097403
(
2009
).
45.
C.
David
and
F. J.
García de Abajo
, “
Spatial nonlocality in the optical response of metal nanoparticles
,”
J. Phys. Chem. C
115
,
19470
19475
(
2011
).
46.
G.
Toscano
,
S.
Raza
,
A.-P.
Jauho
,
N. A.
Mortensen
, and
M.
Wubs
, “
Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response
,”
Opt. Express
20
,
4176
4188
(
2012
).
47.
L.
Stella
,
P.
Zhang
,
F. J.
García-Vidal
,
A.
Rubio
, and
P.
García-González
, “
Performance of nonlocal optics when applied to plasmonic nanostructures
,”
J. Phys. Chem. C
117
,
8941
8949
(
2013
).
48.
S.
Raza
,
N.
Stenger
,
S.
Kadkhodazadeh
,
S. V.
Fischer
,
N.
Kostesha
,
A.-P.
Jauho
,
A.
Burrows
,
M.
Wubs
, and
N. A.
Mortensen
, “
Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS
,”
Nanophotonics
2
,
131
138
(
2013
).
49.
T. V.
Teperik
,
P.
Nordlander
,
J.
Aizpurua
, and
A. G.
Borisov
, “
Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers
,”
Opt. Express
21
,
27306
27325
(
2013
).
50.
T.
Christensen
,
W.
Yan
,
S.
Raza
,
A.-P.
Jauho
,
N. A.
Mortensen
, and
M.
Wubs
, “
Nonlocal response of metallic nanospheres probed by light, electrons, and atoms
,”
ACS Nano
8
,
1745
1758
(
2014
).
51.
S.
Raza
,
S. I.
Bozhevolnyi
,
M.
Wubs
, and
N.
Asger Mortensen
, “
Nonlocal optical response in metallic nanostructures
,”
J. Phys.: Condens. Matter
27
,
183204
(
2015
).
52.
A.
Moradi
, “
Quantum nonlocal effects on optical properties of spherical nanoparticles
,”
Phys. Plasmas
22
,
022119
(
2015
).
53.
M.
Kupresak
,
X.
Zheng
,
G. A. E.
Vandenbosch
, and
V. V.
Moshchalkov
, “
Comparison of hydrodynamic models for the electromagnetic nonlocal response of nanoparticles
,”
Adv. Theory Simul.
1
,
1800076
(
2018
).
54.
M.
Kupresak
,
X.
Zheng
,
G. A. E.
Vandenbosch
, and
V. V.
Moshchalkov
, “
Appropriate nonlocal hydrodynamic models for the characterization of deep-nanometer scale plasmonic scatterers
,”
Adv. Theory Simul.
3
,
1900172
(
2020
).
55.
C.
Ciracì
,
J. B.
Pendry
, and
D. R.
Smith
, “
Hydrodynamic model for plasmonics: A macroscopic approach to a microscopic problem
,”
Chem. Phys. Chem.
14
,
1109
1116
(
2013
).
56.
J. A.
Scholl
,
A. L.
Koh
, and
J. A.
Dionne
, “
Quantum plasmon resonances of individual metallic nanoparticles
,”
Nature
483
,
421
427
(
2012
).
57.
R.
Carmina Monreal
,
T. J.
Antosiewicz
, and
S.
Peter Apell
, “
Competition between surface screening and size quantization for surface plasmons in nanoparticles
,”
New J. Phys.
15
,
083044
(
2013
).
58.
G.
Toscano
,
J.
Straubel
,
A.
Kwiatkowski
,
C.
Rockstuhl
,
F.
Evers
,
H.
Xu
,
N.
Asger Mortensen
, and
M.
Wubs
, “
Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics
,”
Nat. Commun.
6
,
7132
(
2015
).
59.
C.
Ciracì
and
F.
Della Sala
, “
Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail
,”
Phys. Rev. B
93
,
205405
(
2016
).
60.
G.
Manfredi
, “
How to model quantum plasma
,”
Fields Inst. Commun.
46
,
263
(
2005
).
61.
Complex Plasmas: Scientific Challenges and Technological Opportunities
, Springer Series on Atomic, Optical, and Plasma Physics Vol. 82, edited by
M.
Bonitz
,
J.
Lopez
,
K.
Becker
, and
H.
Thomsen
(
Springer International Publishing
,
Cham
,
2014
).
62.
P. K.
Shukla
and
B.
Eliasson
, “
Novel attractive force between ions in quantum plasmas
,”
Phys. Rev. Lett.
108
,
165007
(
2012
).
63.
D.
Michta
,
F.
Graziani
, and
M.
Bonitz
, “
Quantum hydrodynamics for plasmas - a Thomas-Fermi theory perspective
,”
Contrib. Plasma Phys.
55
,
437
443
(
2015
).
64.
Z. A.
Moldabekov
,
M.
Bonitz
, and
T. S.
Ramazanov
, “
Theoretical foundations of quantum hydrodynamics for plasmas
,”
Phys. Plasmas
25
,
031903
(
2018
).
65.
M.
Bonitz
,
Z. A.
Moldabekov
, and
T. S.
Ramazanov
, “
Quantum hydrodynamics for plasmas—Quo vadis?
,”
Phys. Plasmas
26
,
090601
(
2019
).
66.
G.
Manfredi
,
P.-A.
Hervieux
, and
J.
Hurst
, “
Fluid descriptions of quantum plasmas
,”
Rev. Mod. Plasma Phys.
5
,
7
(
2021
).
67.
E.
Zaremba
and
H. C.
Tso
, “
Thomas-Fermi-Dirac-von Weizsäcker hydrodynamics in parabolic wells
,”
Phys. Rev. B
49
,
8147
8162
(
1994
).
68.
B. P.
van Zyl
and
E.
Zaremba
, “
Thomas-Fermi-Dirac-von Weizsäcker hydrodynamics in laterally modulated electronic systems
,”
Phys. Rev. B
59
,
2079
2094
(
1999
).
69.
E.
Zaremba
and
H. C.
Tso
, “
Hydrodynamics in the Thomas-Fermi-Dirac-von Weizsäcker approximation
,” in
Electronic Density Functional Theory
, edited by
J.
Dobson
,
G.
Vignale
, and
M.
Das
(
Springer
,
Boston
,
1998
), pp.
227
242
.
70.
A.
Banerjee
and
M. K.
Harbola
, “
Hydrodynamical approach to collective oscillations in metal clusters
,”
Phys. Lett. A
372
,
2881
2886
(
2008
).
71.
K.
Ding
and
C. T.
Chan
, “
Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method
,”
Phys. Rev. B
96
,
125134
(
2017
).
72.
K.
Ding
and
C. T.
Chan
, “
Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method
,”
Phys. Rev. B
97
,
155118
(
2018
).
73.
M.
Khalid
,
F.
Della Sala
, and
C.
Ciracì
, “
Optical properties of plasmonic core-shell nanomatryoshkas: A quantum hydrodynamic analysis
,”
Opt. Express
26
,
17322
(
2018
).
74.
M.
Khalid
and
C.
Ciracì
, “
Numerical analysis of nonlocal optical response of metallic nanoshells
,”
Photonics
6
,
39
(
2019
).
75.
H. M.
Baghramyan
,
F.
Della Sala
, and
C.
Ciracì
, “
Laplacian-level quantum hydrodynamic theory for plasmonics
,”
Phys. Rev. X
11
,
011049
(
2021
).
76.
Y.-Y.
Zhang
,
S.-B.
An
,
Y.-H.
Song
,
N.
Kang
,
Z. L.
Mišković
, and
Y.-N.
Wang
, “
Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model
,”
Phys. Plasmas
21
,
102114
(
2014
).
77.
W.
Yan
, “
Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas
,”
Phys. Rev. B
91
,
115416
(
2015
).
78.
D. I.
Palade
, “
Multiple surface plasmons in an unbounded quantum plasma half-space
,”
Phys. Plasmas
23
,
074504
(
2016
).
79.
Y.
Zhang
,
M. X.
Gao
, and
B.
Guo
, “
Surface plasmon dispersion relation at an interface between thin metal film and dielectric using a quantum hydrodynamic model
,”
Opt. Commun.
402
,
326
329
(
2017
).
80.
C.
Ciracì
, “
Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory
,”
Phys. Rev. B
95
,
245434
(
2017
).
81.
C.
Ciracì
,
R.
Jurga
,
M.
Khalid
, and
F.
Della Sala
, “
Plasmonic quantum effects on single-emitter strong coupling
,”
Nanophotonics
8
,
1821
1833
(
2019
).
82.
D.
de Ceglia
,
M.
Scalora
,
M. A.
Vincenti
,
S.
Campione
,
K.
Kelley
,
E. L.
Runnerstrom
,
J.-P.
Maria
,
G. A.
Keeler
, and
T. S.
Luk
, “
Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms
,”
Sci. Rep.
8
,
9335
(
2018
).
83.
A.
Diaw
and
M. S.
Murillo
, “
A viscous quantum hydrodynamics model based on dynamic density functional theory
,”
Sci. Rep.
7
,
15352
(
2017
).
84.
A.
Bergara
,
J. M.
Pitarke
, and
R. H.
Ritchie
, “
Nonlinear quantum hydrodynamical model of the electron gas
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
115
,
70
74
(
1996
).
85.
N.
Crouseilles
,
P.-A.
Hervieux
, and
G.
Manfredi
, “
Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films
,”
Phys. Rev. B
78
,
155412
(
2008
).
86.
F.
De Luca
and
C.
Ciracì
, “
Difference-frequency generation in plasmonic nanostructures: A parameter-free hydrodynamic description
,”
J. Opt. Soc. Am. B
36
,
1979
1986
(
2019
).
87.
M.
Khalid
and
C.
Ciracì
, “
Enhancing second-harmonic generation with electron spill-out at metallic surfaces
,”
Commun. Phys.
3
,
214
(
2020
).
88.
A.
Domps
,
P.-G.
Reinhard
, and
E.
Suraud
, “
Time-dependent Thomas-Fermi approach for electron dynamics in metal clusters
,”
Phys. Rev. Lett.
80
,
5520
(
1998
).
89.
M. K.
Harbola
, “
Differential virial theorem and quantum fluid dynamics
,”
Phys. Rev. A
58
,
1779
1782
(
1998
).
90.
D.
Neuhauser
,
S.
Pistinner
,
A.
Coomar
,
X.
Zhang
, and
G.
Lu
, “
Dynamic kinetic energy potential for orbital-free density functional theory
,”
J. Chem. Phys.
134
,
144101
(
2011
).
91.
D. I.
Palade
, “
Nonlocal orbital-free kinetic pressure tensors for the Fermi gas
,”
Phys. Rev. B
98
,
245401
(
2018
).
92.
A. J.
White
,
O.
Certik
,
Y. H.
Ding
,
S. X.
Hu
, and
L. A.
Collins
, “
Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the mermin-Kohn-Sham theory at high temperatures
,”
Phys. Rev. B
98
,
144302
(
2018
).
93.
Y. H.
Ding
,
A. J.
White
,
S. X.
Hu
,
O.
Certik
, and
L. A.
Collins
, “
Ab initio studies on the stopping power of warm dense matter with time-dependent orbital-free density functional theory
,”
Phys. Rev. Lett.
121
,
145001
(
2018
).
94.
K.
Jiang
and
M.
Pavanello
, “
Time-dependent orbital-free density functional theory: Background and Pauli kernel approximations
,”
Phys. Rev. B
103
,
245102
(
2021
).
95.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
USA
,
1994
).
96.
Y. A.
Wang
and
E. A.
Carter
, “
Orbital-free kinetic-energy density functional theory
,” in
Theoretical Methods in Condensed Phase Chemistry
, edited by
S. D.
Schwartz
(
Kluwer Academic Publishers
,
Dordrecht
,
2002
), Vol. 5, pp.
117
184
.
97.
V.
Gavini
,
K.
Bhattacharya
, and
M.
Ortiz
, “
Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation
,”
J. Mech. Phys. Solids
55
,
697
718
(
2007
).
98.
J.
Xia
,
C.
Huang
,
I.
Shin
, and
E. A.
Carter
, “
Can orbital-free density functional theory simulate molecules?
,”
J. Chem. Phys.
136
,
084102
(
2012
).
99.
T. A.
Wesolowski
and
Y. A.
Wang
,
Recent Progress in Orbital-free Density Functional Theory
(
World Scientific
,
2013
).
100.
W. C.
Witt
,
B. G.
del Rio
,
J. M.
Dieterich
, and
E. A.
Carter
, “
Orbital-free density functional theory for materials research
,”
J. Mater. Res.
33
,
777
795
(
2018
).
101.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
102.
M.
Pi
,
M.
Barranco
,
J.
Nemeth
,
C.
Ngô
, and
E.
Tomasi
, “
Time-dependent Thomas-Fermi approach to nuclear monopole oscillations
,”
Phys. Lett. B
166
,
1
4
(
1986
).
103.
J.
Wu
,
R.
Feng
, and
W.
Nörenberg
, “
Effective Schrödinger equation for nuclear fluid dynamics
,”
Phys. Lett. B
209
,
430
433
(
1988
).
104.
T.
Takeuci
and
K.
Yabana
, “
Numerical scheme for a nonlinear optical response of a metallic nanostructure: Quantum hydrodynamic theory solved by adopting an effective Schrödinger equation
,”
Opt. Express
30
,
11572
11587
(
2022
).
105.
H.
Xiang
,
X.
Zhang
,
D.
Neuhauser
, and
G.
Lu
, “
Size-dependent plasmonic resonances from large-scale quantum simulations
,”
J. Phys. Chem. Lett.
5
,
1163
1169
(
2014
).
106.
H.
Xiang
,
M.
Zhang
,
X.
Zhang
, and
G.
Lu
, “
Understanding quantum plasmonics from time-dependent orbital-free density functional theory
,”
J. Phys. Chem. C
120
,
14330
14336
(
2016
).
107.
X.
Zhang
,
H.
Xiang
,
M.
Zhang
, and
G.
Lu
, “
Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations
,”
Int. J. Mod. Phys. B
31
,
1740003
(
2017
).
108.
H.
Xiang
,
Z.
Wang
,
L.
Xu
,
X.
Zhang
, and
G.
Lu
, “
Quantum plasmonics in nanorods: A time-dependent orbital-free density functional theory study with thousands of atoms
,”
J. Phys. Chem. C
124
,
945
951
(
2020
).
109.
K.
Jiang
,
X.
Shao
, and
M.
Pavanello
, “
Nonlocal and nonadiabatic pauli potential for time-dependent orbital-free density functional theory
,”
Phys. Rev. B
104
,
235110
(
2021
).
110.
X.
Shao
,
K.
Jiang
,
W.
Mi
,
A.
Genova
, and
M.
Pavanello
, “
DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1482
(
2021
).
111.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
112.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
, Oxford Graduate Texts (
Oxford University Press
,
Oxford; New York
,
2012
).
113.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
114.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
,
Heidelberg
,
1990
).
115.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time
,”
Phys. Rev. B
54
,
4484
4487
(
1996
).
116.
C.
Lian
,
M.
Guan
,
S.
Hu
,
J.
Zhang
, and
S.
Meng
, “
Photoexcitation in solids: First-principles quantum simulations by real-time TDDFT
,”
Adv. Theory Simul.
1
,
1800055
(
2018
).
117.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
DePrince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
118.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol. 1, pp.
155
192
.
119.
D. A.
Strubbe
,
L.
Lehtovaara
,
A.
Rubio
,
M. A. L.
Marques
, and
S. G.
Louie
, “
Response functions in TDDFT: Concepts and implementation
,” in
Fundamentals of Time-Dependent Density Functional Theory
(
Springer
,
2012
), pp.
139
166
.
120.
B.
Walker
,
A. M.
Saitta
,
R.
Gebauer
, and
S.
Baroni
, “
Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy
,”
Phys. Rev. Lett.
96
,
113001
(
2006
).
121.
D.
Rocca
,
R.
Gebauer
,
Y.
Saad
, and
S.
Baroni
, “
Turbo charging time-dependent density-functional theory with Lanczos chains
,”
J. Chem. Phys.
128
,
154105
(
2008
).
122.
F.
Wu
,
W.
Liu
,
Y.
Zhang
, and
Z.
Li
, “
Linear-scaling time-dependent density functional theory based on the idea of from fragments to molecule
,”
J. Chem. Theory Comput.
7
,
3643
3660
(
2011
).
123.
T. J.
Zuehlsdorff
,
N. D. M.
Hine
,
J. S.
Spencer
,
N. M.
Harrison
,
D. J.
Riley
, and
P. D.
Haynes
, “
Linear-scaling time-dependent density-functional theory in the linear response formalism
,”
J. Chem. Phys.
139
,
064104
(
2013
).
124.
O.
Baseggio
,
G.
Fronzoni
, and
M.
Stener
, “
A new time dependent density functional algorithm for large systems and plasmons in metal clusters
,”
J. Chem. Phys.
143
,
024106
(
2015
).
125.
J.
Brabec
,
L.
Lin
,
M.
Shao
,
N.
Govind
,
C.
Yang
,
Y.
Saad
, and
E. G.
Ng
, “
Efficient algorithms for estimating the absorption spectrum within linear response TDDFT
,”
J. Chem. Theory Comput.
11
,
5197
(
2015
).
126.
Y.
Gao
,
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Sublinear scaling for time-dependent stochastic density functional theory
,”
J. Chem. Phys.
142
,
034106
(
2015
).
127.
O.
Baseggio
,
M.
De Vetta
,
G.
Fronzoni
,
M.
Stener
,
L.
Sementa
,
A.
Fortunelli
, and
A.
Calzolari
, “
Photoabsorption of icosahedral noble metal clusters: An efficient TDDFT approach to large-scale systems
,”
J. Phys. Chem. C
120
,
12773
12782
(
2016
).
128.
G.
Giannone
and
F.
Della Sala
, “
Minimal auxiliary basis set for time-dependent density functional theory and comparison with tight-binding approximations: Application to silver nanoparticles
,”
J. Chem. Phys.
153
,
084110
(
2020
).
129.
J. C.
Idrobo
and
S. T.
Pantelides
, “
Origin of bulklike optical response in noble-metal Ag and Au nanoparticles
,”
Phys. Rev. B
82
,
085420
(
2010
).
130.
C. M.
Aikens
,
S.
Li
, and
G. C.
Schatz
, “
From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters
,”
J. Phys. Chem. C
112
,
11272
11279
(
2008
).
131.
J.-O.
Joswig
,
L. O.
Tunturivuori
, and
R. M.
Nieminen
, “
Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory
,”
J. Chem. Phys.
128
,
014707
(
2008
).
132.
H.-C.
Weissker
and
C.
Mottet
, “
Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure
,”
Phys. Rev. B
84
,
165443
(
2011
).
133.
G.-T.
Bae
and
C. M.
Aikens
, “
Time-dependent density functional theory studies of optical properties of Ag nanoparticles: Octahedra, truncated octahedra, and icosahedra
,”
J. Phys. Chem. C
116
,
10356
(
2012
).
134.
X.
López-Lozano
,
H.
Barron
,
C.
Mottet
, and
H.-C.
Weissker
, “
Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods-an ab initio TDDFT study
,”
Phys. Chem. Chem. Phys.
16
,
1820
1823
(
2014
).
135.
G.
Barcaro
,
L.
Sementa
,
A.
Fortunelli
, and
M.
Stener
, “
Optical properties of silver nanoshells from time-dependent density functional theory calculations
,”
J. Phys. Chem. C
118
,
12450
(
2014
).
136.
M.
Kuisma
,
A.
Sakko
,
T. P.
Rossi
,
A. H.
Larsen
,
J.
Enkovaara
,
L.
Lehtovaara
, and
T. T.
Rantala
, “
Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations
,”
Phys. Rev. B
91
,
115431
(
2015
).
137.
H.-C.
Weissker
and
X.
López-Lozano
, “
Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations
,”
Phys. Chem. Chem. Phys.
17
,
28379
(
2015
).
138.
P.
Koval
,
F.
Marchesin
,
D.
Foerster
, and
D.
Sánchez-Portal
, “
Optical response of silver clusters and their hollow shells from linear-response TDDFT
,”
J. Phys.: Condens. Matter
28
,
214001
(
2016
).
139.
T. P.
Rossi
,
M.
Kuisma
,
M. J.
Puska
,
R. M.
Nieminen
, and
P.
Erhart
, “
Kohn–Sham decomposition in real-time time-dependent density-functional theory: An efficient tool for analyzing plasmonic excitations
,”
J. Chem. Theory Comput.
13
,
4779
(
2017
).
140.
R.
Schira
and
F.
Rabilloud
, “
Localized surface plasmon resonance in free silver nanoclusters Agn, n = 20–147
,”
J. Phys. Chem. C
123
,
6205
(
2019
).
141.
R.
Sinha-Roy
,
P.
García-González
, and
H.-C.
Weissker
, “
How metallic are noble-metal clusters? Static screening and polarizability in quantum-sized silver and gold nanoparticles
,”
Nanoscale
12
,
4452
(
2020
).
142.
G.
Piccini
,
R. W. A.
Havenith
,
R.
Broer
, and
M.
Stener
, “
Gold nanowires: A time-dependent density functional assessment of plasmonic behavior
,”
J. Phys. Chem. C
117
,
17196
(
2013
).
143.
S.
Malola
,
L.
Lehtovaara
,
J.
Enkovaara
, and
H.
Häkkinen
, “
Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters
,”
ACS Nano
7
,
10263
(
2013
).
144.
K.
Iida
,
M.
Noda
,
K.
Ishimura
, and
K.
Nobusada
, “
First-principles computational visualization of localized surface plasmon resonance in gold nanoclusters
,”
J. Phys. Chem. A
118
,
11317
(
2014
).
145.
R. W.
Burgess
and
V. J.
Keast
, “
TDDFT study of the optical absorption spectra of bare gold clusters
,”
J. Phys. Chem. C
118
,
3194
(
2014
).
146.
K.
Iida
,
M.
Noda
, and
K.
Nobusada
, “
Interface electronic properties between a gold core and thiolate ligands: Effects on an optical absorption spectrum in Au133(SPh-tBu)52
,”
J. Phys. Chem. C
120
,
2753
(
2016
).
147.
A.
Varas
,
P.
García-González
,
J.
Feist
,
F. J.
García-Vidal
, and
A.
Rubio
, “
Quantum plasmonics: From jellium models to ab initio calculations
,”
Nanophotonics
5
,
409
426
(
2016
).
148.
S.
Hernandez
,
Y.
Xia
,
V.
Vlček
,
R.
Boutelle
,
R.
Baer
,
E.
Rabani
, and
D.
Neuhauser
, “
First-principles spectra of au nanoparticles: From quantum to classical absorption
,”
Mol. Phys.
116
,
2506
(
2018
).
149.
G.-T.
Bae
and
C. M.
Aikens
, “
TDDFT and CIS studies of optical properties of dimers of silver tetrahedra
,”
J. Phys. Chem. A
116
,
8260
8269
(
2012
).
150.
P.
Zhang
,
J.
Feist
,
A.
Rubio
,
P.
García-González
, and
F. J.
García-Vidal
, “
Ab initio nanoplasmonics: The impact of atomic structure
,”
Phys. Rev. B
90
,
161407
(
2014
).
151.
A.
Varas
,
P.
García-González
,
F. J.
García-Vidal
, and
A.
Rubio
, “
Anisotropy effects on the plasmonic response of nanoparticle dimers
,”
J. Phys. Chem. Lett.
6
,
1891
(
2015
).
152.
M.
Barbry
,
P.
Koval
,
F.
Marchesin
,
R.
Esteban
,
A. G.
Borisov
,
J.
Aizpurua
, and
D.
Sánchez-Portal
, “
Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics
,”
Nano Lett.
15
,
3410
3419
(
2015
).
153.
M.
Urbieta
,
M.
Barbry
,
Y.
Zhang
,
P.
Koval
,
D.
Sánchez-Portal
,
N.
Zabala
, and
J.
Aizpurua
, “
Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect
,”
ACS Nano
12
,
585
595
(
2018
).
154.
P.
Liu
,
D. V.
Chulhai
, and
L.
Jensen
, “
Atomistic characterization of plasmonic dimers in the quantum size regime
,”
J. Phys. Chem. C
123
,
13900
13907
(
2019
).
155.
F.
Della Sala
,
M.
Pezzolla
,
S.
D’Agostino
, and
E.
Fabiano
, “
Ab initio plasmonics of externally doped silicon nanocrystals
,”
ACS Photonics
6
,
1474
1484
(
2019
).
156.
E.
Selenius
,
S.
Malola
,
M.
Kuisma
, and
H.
Häkkinen
, “
Charge transfer plasmons in dimeric electron clusters
,”
J. Phys. Chem. C
124
,
12645
12654
(
2020
).
157.
W.
Ekardt
, “
Size-dependent photoabsorption and photoemission of small metal particles
,”
Phys. Rev. B
31
,
6360
6370
(
1985
).
158.
D. E.
Beck
, “
Self-consistent calculation of the eigenfrequencies for the electronic excitations in small jellium spheres
,”
Phys. Rev. B
35
,
7325
7333
(
1987
).
159.
G.
Bertsch
, “
An RPA program for jellium spheres
,”
Comput. Phys. Commun.
60
,
247
255
(
1990
).
160.
M.
Brack
, “
The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches
,”
Rev. Mod. Phys.
65
,
677
732
(
1993
).
161.
B.
Palpant
,
B.
Prével
,
J.
Lermé
,
E.
Cottancin
,
M.
Pellarin
,
M.
Treilleux
,
A.
Perez
,
J. L.
Vialle
, and
M.
Broyer
, “
Optical properties of gold clusters in the size range 2–4 nm
,”
Phys. Rev. B
57
,
1963
1970
(
1998
).
162.
E.
Townsend
and
G. W.
Bryant
, “
Plasmonic properties of metallic nanoparticles: The effects of size quantization
,”
Nano Lett.
12
,
429
434
(
2012
).
163.
M.
Zapata Herrera
,
J.
Aizpurua
,
A. K.
Kazansky
, and
A. G.
Borisov
, “
Plasmon response and electron dynamics in charged metallic nanoparticles
,”
Langmuir
32
,
2829
2840
(
2016
).
164.
J.
Zuloaga
,
E.
Prodan
, and
P.
Nordlander
, “
Quantum description of the plasmon resonances of a nanoparticle dimer
,”
Nano Lett.
9
,
887
891
(
2009
).
165.
D. C.
Marinica
,
A. K.
Kazansky
,
P.
Nordlander
,
J.
Aizpurua
, and
A. G.
Borisov
, “
Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer
,”
Nano Lett.
12
,
1333
1339
(
2012
).
166.
E.
Prodan
and
P.
Nordlander
, “
Electronic structure and polarizability of metallic nanoshells
,”
Chem. Phys. Lett.
352
,
140
146
(
2002
).
167.
C.
Yannouleas
, “
Microscopic description of the surface dipole plasmon in large NaN clusters (950N12050)
,”
Phys. Rev. B
58
,
6748
6751
(
1998
).
168.
R.
van Leeuwen
, “
Mapping from densities to potentials in time-dependent density-functional theory
,”
Phys. Rev. Lett.
82
,
3863
3866
(
1999
).
169.
R.
Van Leeuwen
, “
Key concepts in time-dependent density-functional theory
,”
Int. J. Mod. Phys. B
15
,
1969
2023
(
2001
).
170.
I. V.
Tokatly
, “
Quantum many-body dynamics in a Lagrangian frame: I. Equations of motion and conservation laws
,”
Phys. Rev. B
71
,
165104
(
2005
).
171.
W.
Tarantino
and
C. A.
Ullrich
, “
A reformulation of time-dependent Kohn–Sham theory in terms of the second time derivative of the density
,”
J. Chem. Phys.
154
,
204112
(
2021
).
172.
X.
Andrade
,
S.
Botti
,
M. A. L.
Marques
, and
A.
Rubio
, “
Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities
,”
J. Chem. Phys.
126
,
184106
(
2007
).
173.
F.
Hofmann
,
I.
Schelter
, and
S.
Kümmel
, “
Linear response time-dependent density functional theory without unoccupied states: The Kohn-Sham-Sternheimer scheme revisited
,”
J. Chem. Phys.
149
,
024105
(
2018
).
174.
F.
Furche
and
K.
Burke
, “
Time-dependent density functional theory in quantum chemistry
,”
Annu. Rep. Comput. Chem.
1
,
19
30
(
2005
).
175.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body green’s-function approaches
,”
Rev. Mod. Phys.
74
,
601
659
(
2002
).
176.
A.
Zangwill
and
P.
Soven
, “
Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases
,”
Phys. Rev. A
21
,
1561
1572
(
1980
).
177.
G.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
2005
).
178.
O.
Keller
, “
Local fields in the electrodynamics of mesoscopic media
,”
Phys. Rep.
268
,
85
262
(
1996
).
179.
O. S.
Jenkins
and
K. L. C.
Hunt
, “
Non-local dielectric functions on the nanoscale: Electronic polarization and fluctuations
,”
J. Mol. Struct.: THEOCHEM
633
,
145
155
(
2003
).
180.
E.
Madelung
, “
Quantum theory in hydrodynamical form
,”
Z. Phys.
40
,
322
(
1927
).
181.
C. F.
von Weizsäcker
, “
Zur theorie der kernmassen
,”
Z. Phys.
96
,
431
458
(
1935
).
182.
L. J.
Bartolotti
, “
The hydrodynamic formulation of time-dependent Kohn-Sham orbital density functional theory
,”
J. Phys. Chem.
90
,
5518
5523
(
1986
).
183.
R.
Bauernschmitt
,
M.
Häser
,
O.
Treutler
, and
R.
Ahlrichs
, “
Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions
,”
Chem. Phys. Lett.
264
,
573
(
1997
).
184.
L.
Brey
,
N. F.
Johnson
, and
B. I.
Halperin
, “
Optical and magneto-optical absorption in parabolic quantum wells
,”
Phys. Rev. B
40
,
10647
10649
(
1989
).
185.
J. F.
Dobson
, “
Harmonic-potential theorem: Implications for approximate many-body theories
,”
Phys. Rev. Lett.
73
,
2244
2247
(
1994
).
186.
G.
Vignale
, “
Center of mass and relative motion in time dependent density functional theory
,”
Phys. Rev. Lett.
74
,
3233
3236
(
1995
).
187.
K.
Hagino
, “
Anharmonicity of the dipole resonance of metal clusters
,”
Phys. Rev. B
60
,
R2197
R2199
(
1999
).
188.
L. G.
Gerchikov
,
C.
Guet
, and
A. N.
Ipatov
, “
Multiple plasmons and anharmonic effects in small metallic clusters
,”
Phys. Rev. A
66
,
053202
(
2002
).
189.
G.
Weick
,
G.-L.
Ingold
,
R. A.
Jalabert
, and
D.
Weinmann
, “
Surface plasmon in metallic nanoparticles: Renormalization effects due to electron-hole excitations
,”
Phys. Rev. B
74
,
165421
(
2006
).
190.
J.
Lermé
,
H.
Baida
,
C.
Bonnet
,
M.
Broyer
,
E.
Cottancin
,
A.
Crut
,
P.
Maioli
,
N.
Del Fatti
,
F.
Vallée
, and
M.
Pellarin
, “
Size dependence of the surface plasmon resonance damping in metal nanospheres
,”
J. Phys. Chem. Lett.
1
,
2922
2928
(
2010
).
191.
J.
Lermé
, “
Size evolution of the surface plasmon resonance damping in silver nanoparticles: Confinement and dielectric effects
,”
J. Phys. Chem. C
115
,
14098
14110
(
2011
).
192.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer Berlin
,
Heidelberg
,
1995
).
193.
A. J.
Bennett
, “
Influence of the electron charge distribution on surface-plasmon dispersion
,”
Phys. Rev. B
1
,
203
207
(
1970
).
194.
K.-D.
Tsuei
,
E. W.
Plummer
,
A.
Liebsch
,
K.
Kempa
, and
P.
Bakshi
, “
Multipole plasmon modes at a metal surface
,”
Phys. Rev. Lett.
64
,
44
47
(
1990
).
195.
K.-D.
Tsuei
,
E. W.
Plummer
,
A.
Liebsch
,
E.
Pehlke
,
K.
Kempa
, and
P.
Bakshi
, “
The normal modes at the surface of simple metals
,”
Surf. Sci.
247
,
302
326
(
1991
).
196.
A.
Liebsch
, “
Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals
,”
Phys. Rev. B
48
,
11317
11328
(
1993
).
197.
A.
Liebsch
,
Electronic Excitations at Metal Surfaces
(
Springer
,
1997
).
198.
W.
Yang
,
P. W.
Ayers
, and
Q.
Wu
, “
Potential functionals: Dual to density functionals and solution to the v-representability problem
,”
Phys. Rev. Lett.
92
,
146404
(
2004
).
199.
A.
Cangi
,
D.
Lee
,
P.
Elliott
,
K.
Burke
, and
E. K. U.
Gross
, “
Electronic structure via potential functional approximations
,”
Phys. Rev. Lett.
106
,
236404
(
2011
).
200.
B.
Goodman
and
A.
Sjölander
, “
Application of the third moment to the electric and magnetic response function
,”
Phys. Rev. B
8
,
200
214
(
1973
).
201.
A.
Griffin
and
J.
Harris
, “
Sum rules for a bounded electron gas
,”
Can. J. Phys.
54
,
1396
1408
(
1976
).
202.
A. A.
Lushnikov
and
A. J.
Simonov
, “
Surface plasmons in small metal particles
,”
Z. Phys.
270
,
17
24
(
1974
).
203.
G.
Mukhopadhyay
and
S.
Lundqvist
, “
Density oscillations and density response in systems with nonuniform electron density
,”
Nuovo Cimento B
27
,
1
18
(
1975
).
204.
G.
Mukhopadhyay
and
S.
Lundqvist
, “
Collective motion in heavy atoms
,”
J. Phys. B: At. Mol. Phys.
12
,
1297
1304
(
1979
).
205.
V. V.
Kresin
, “
Collective resonances and response properties of electrons in metal clusters
,”
Phys. Rep.
220
,
1
52
(
1992
).
206.
E.
Prodan
and
P.
Nordlander
, “
Structural tunability of the plasmon resonances in metallic nanoshells
,”
Nano Lett.
3
,
543
547
(
2003
).
207.
M.
Ichikawa
, “
Theory of localized plasmons for metal nanostructures in random-phase approximation
,”
J. Phys. Soc. Jpn.
80
,
044606
(
2011
).
208.
Y.
Pavlyukh
,
J.
Berakdar
, and
K.
Köksal
, “
Fast computations of the dielectric response of systems with spherical or axial symmetry
,”
Phys. Rev. B
85
,
195418
(
2012
).
209.
J.
Höller
,
E.
Krotscheck
, and
É.
Suraud
, “
On the response function of simple metal clusters
,”
Eur. Phys. J. D
69
,
141
(
2015
).
210.
R.
Ruppin
, “
Optical properties of a metal sphere with a diffuse surface
,”
J. Opt. Soc. Am.
66
,
449
453
(
1976
).
211.
S. V.
Fomichev
and
W.
Becker
, “
Linear and nonlinear light scattering and absorption in free-electron nanoclusters with diffuse surface: General considerations and linear response
,”
Phys. Rev. A
81
,
063201
(
2010
).
212.
V. V.
Karasiev
and
S. B.
Trickey
, “
Issues and challenges in orbital-free density functional calculations
,”
Comput. Phys. Commun.
183
,
2519
2527
(
2012
).
213.
F.
Tran
and
T. A.
Wesolowski
, “
Semilocal approximation for the kinetic energy
,” in
Recent Advances in Computational Chemistry
, edited by
T. A.
Wesolowski
and
Y. A.
Wang
(
World Scientific
,
Singapore
,
2013
), Vol. 6, pp.
429
442
.
214.
A.
Lembarki
and
H.
Chermette
, “
Obtaining a gradient-corrected kinetic-energy functional from the Perdew-Wang exchange functional
,”
Phys. Rev. A
50
,
5328
5331
(
1994
).
215.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
, “
Orbital-free kinetic-energy functionals for the nearly free electron gas
,”
Phys. Rev. B
58
,
13465
(
1998
).
216.
J. P.
Perdew
and
L. A.
Constantin
, “
Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy
,”
Phys. Rev. B
75
,
155109
(
2007
).
217.
V. V.
Karasiev
,
R. S.
Jones
,
S. B.
Trickey
, and
F. E.
Harris
, “
Properties of constraint-based single-point approximate kinetic energy functionals
,”
Phys. Rev. B
80
,
245120
(
2009
).
218.
S.
Laricchia
,
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Laplacian-level kinetic energy approximations based on the fourth-order gradient expansion: Global assessment and application to the subsystem formulation of density functional theory
,”
J. Chem. Theory Comput.
10
,
164
179
(
2014
).
219.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
, “
Generalized gradient approximations of the noninteracting kinetic energy from the semiclassical atom theory: Rationalization of the accuracy of the frozen density embedding theory for nonbonded interactions
,”
J. Chem. Theory Comput.
7
,
2439
2451
(
2011
).
220.
L. A.
Constantin
,
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
, “
Semiclassical neutral atom as a reference system in density functional theory
,”
Phys. Rev. Lett.
106
,
186406
(
2011
).
221.
I.
Shin
and
E. A.
Carter
, “
Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors
,”
J. Chem. Phys.
140
,
18A531
(
2014
).
222.
A. C.
Cancio
,
D.
Stewart
, and
A.
Kuna
, “
Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free description in molecules
,”
J. Chem. Phys.
144
,
084107
(
2016
).
223.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Modified fourth-order kinetic energy gradient expansion with Hartree potential-dependent coefficients
,”
J. Chem. Theory Comput.
13
,
4228
4239
(
2017
).
224.
J.
Seino
,
R.
Kageyama
,
M.
Fujinami
,
Y.
Ikabata
, and
H.
Nakai
, “
Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density
,”
J. Chem. Phys.
148
,
241705
(
2018
).
225.
P.
Golub
and
S.
Manzhos
, “
Kinetic energy densities based on the fourth order gradient expansion: Performance in different classes of materials and improvement via machine learning
,”
Phys. Chem. Chem. Phys.
21
,
378
(
2018
).
226.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory
,”
Phys. Rev. B
97
,
205137
(
2018
).
227.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Semilocal Pauli–Gaussian kinetic functionals for orbital-free density functional theory calculations of solids
,”
J. Phys. Chem. Lett.
9
,
4385
4390
(
2018
).
228.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Performance of semilocal kinetic energy functionals for orbital-free density functional theory
,”
J. Chem. Theory Comput.
15
,
3044
3055
(
2019
).
229.
F.
Sarcinella
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
, “
Nonlocal kinetic energy functionals in real space using a Yukawa-potential kernel: Properties, linear response, and model functionals
,”
Phys. Rev. B
103
,
155127
(
2021
).
230.
F.
Imoto
,
M.
Imada
, and
A.
Oshiyama
, “
Order-n orbital-free density-functional calculations with machine learning of functional derivatives for semiconductors and metals
,”
Phys. Rev. Res.
3
,
033198
(
2021
).
231.
L. H.
Thomas
, “
The calculation of atomic fields
,”
Math. Proc. Cambridge Philos. Soc.
23
,
542
548
(
1927
).
232.
E.
Fermi
, “
Un metodo statistico per la determinazione di alcune prioprietà dell’atomo
,”
Rend. Accad. Naz. Lincei
6
,
602
607
(
1927
).
233.
G. K.-L.
Chan
,
A. J.
Cohen
, and
N. C.
Handy
, “
Thomas–Fermi–Dirac–von Weizsäcker models in finite systems
,”
J. Chem. Phys.
114
,
631
638
(
2001
).
234.
L. A.
Espinosa Leal
,
A.
Karpenko
,
M. A.
Caro
, and
O.
Lopez-Acevedo
, “
Optimizing a parametrized Thomas–Fermi–Dirac–Weizsacker density functional for atoms
,”
Phys. Chem. Chem. Phys.
17
,
31463
31471
(
2015
).
235.
B. M.
Deb
and
S. K.
Ghosh
, “
New method for the direct calculation of electron density in many-electron systems. I. Application to closed-shell atoms
,”
Int. J. Quantum Chem.
23
,
1
26
(
1983
).
236.
M.
Levy
and
H.
Ou-Yang
, “
Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional
,”
Phys. Rev. A
38
,
625
(
1988
).
237.
L.-W.
Wang
and
M. P.
Teter
, “
Kinetic-energy functional of the electron density
,”
Phys. Rev. B
45
,
13196
(
1992
).
238.
F.
Perrot
, “
Hydrogen-hydrogen interaction in an electron gas
,”
J. Phys.: Condens. Matter
6
,
431
(
1994
).
239.
E.
Smargiassi
and
P. A.
Madden
, “
Orbital-free kinetic-energy functionals for first-principles molecular dynamics
,”
Phys. Rev. B
49
,
5220
(
1994
).
240.
D.
García-Aldea
and
J. E.
Alvarellos
, “
Fully nonlocal kinetic energy density functionals: A proposal and a general assessment for atomic systems
,”
J. Chem. Phys.
129
,
074103
(
2008
).
241.
C.
Huang
and
E. A.
Carter
, “
Nonlocal orbital-free kinetic energy density functional for semiconductors
,”
Phys. Rev. B
81
,
045206
(
2010
).
242.
W.
Mi
,
A.
Genova
, and
M.
Pavanello
, “
Nonlocal kinetic energy functionals by functional integration
,”
J. Chem. Phys.
148
,
184107
(
2018
).
243.
W.
Mi
and
M.
Pavanello
, “
Orbital-free density functional theory correctly models quantum dots when asymptotics, nonlocality, and nonhomogeneity are accounted for
,”
Phys. Rev. B
100
,
041105
(
2019
).
244.
Q.
Xu
,
J.
Lv
,
Y.
Wang
, and
Y.
Ma
, “
Nonlocal kinetic energy density functionals for isolated systems obtained via local density approximation kernels
,”
Phys. Rev. B
101
,
045110
(
2020
).
245.
C.
Herring
, “
Explicit estimation of ground-state kinetic energies from electron densities
,”
Phys. Rev. A
34
,
2614
2631
(
1986
).
246.
N.
Choly
and
E.
Kaxiras
, “
Kinetic energy density functionals for non-periodic systems
,”
Solid State Commun.
121
,
281
286
(
2002
).
247.
C. J.
García-Cervera
., “
An efficient real space method for orbital-free density-functional theory
,”
Commun. Comput. Phys.
2
,
334
357
(
2007
), see https://global-sci.org/intro/article_detail/cicp/7909.html.
248.
E.
Fabiano
,
F.
Sarcinella
,
L. A.
Constantin
, and
F.
Della Sala
, “
Kinetic energy density functionals based on a generalized screened Coulomb potential: Linear response and future perspectives
,”
Computation
10
,
30
(
2022
).
249.
A.
Schild
and
E. K. U.
Gross
, “
Exact single-electron approach to the dynamics of molecules in strong laser fields
,”
Phys. Rev. Lett.
118
,
163202
(
2017
).
250.
R.
Singh
and
B. M.
Deb
, “
Developments in excited-state density functional theory
,”
Phys. Rep.
311
,
47
94
(
1999
).
251.
B. M.
Deb
and
S. K.
Ghosh
, “
Schrödinger fluid dynamics of many-electron systems in a time-dependent density-functional framework
,”
J. Chem. Phys.
77
,
342
348
(
1982
).
252.
L. J.
Bartolotti
, “
Time-dependent Kohn-Sham density-functional theory
,”
Phys. Rev. A
26
,
2243
2244
(
1982
).
253.
S. K.
Ghosh
and
B. M.
Deb
, “
Densities, density-functionals and electron fluids
,”
Phys. Rep.
92
,
1
44
(
1982
).
254.
M. T.
Michalewicz
, “
Hydrodynamic model of collective electronic oscillations in spherical geometries
,” in
Topics in Condensed Matter Physics
(
Nova Science Publishers
,
1995
), pp.
143
167
.
255.
A.
Banerjee
and
M. K.
Harbola
, “
Hydrodynamic approach to time-dependent density functional theory; Response properties of metal clusters
,”
J. Chem. Phys.
113
,
5614
5623
(
2000
).
256.
J. R.
Maack
,
N. A.
Mortensen
, and
M.
Wubs
, “
Size-dependent nonlocal effects in plasmonic semiconductor particles
,”
Europhys. Lett.
119
,
17003
(
2017
).
257.
F.
De Luca
,
M.
Ortolani
, and
C.
Ciracì
, “
Free electron nonlinearities in heavily doped semiconductors plasmonics
,”
Phys. Rev. B
103
,
115305
(
2021
).
258.
J. F.
Dobson
and
H. M.
Le
, “
High-frequency hydrodynamics and Thomas–Fermi theory
,”
J. Mol. Struct.: THEOCHEM
501-502
,
327
338
(
2000
).
259.
M.
Thiele
and
S.
Kümmel
, “
Hydrodynamic perspective on memory in time-dependent density-functional theory
,”
Phys. Rev. A
79
,
052503
(
2009
).
260.
X.
Shao
,
W.
Mi
, and
M.
Pavanello
, “
Efficient DFT solver for nanoscale simulations and beyond
,”
J. Phys. Chem. Lett.
12
,
4134
4139
(
2021
).
261.
K.
Ding
and
C. T.
Chan
, “
An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method
,”
J. Phys.: Condens. Matter
30
,
084007
(
2018
).
262.
S. A.
Chin
and
E.
Krotscheck
, “
Structure and collective excitations of 4He clusters
,”
Phys. Rev. B
45
,
852
(
1992
).
263.
P.
Halevi
, “
Hydrodynamic model for the degenerate free-electron gas: Generalization to arbitrary frequencies
,”
Phys. Rev. B
51
,
7497
7499
(
1995
).
264.
I.
Tokatly
and
O.
Pankratov
, “
Hydrodynamic theory of an electron gas
,”
Phys. Rev. B
60
,
15550
15553
(
1999
).
265.
J. M.
Pitarke
,
V. M.
Silkin
,
E. V.
Chulkov
, and
P. M.
Echenique
, “
Theory of surface plasmons and surface-plasmon polaritons
,”
Rep. Prog. Phys.
70
,
1
87
(
2006
).
266.
R.
Slavchov
and
R.
Tsekov
, “
Quantum hydrodynamics of electron gases
,”
J. Chem. Phys.
132
,
084505
(
2010
).
267.
M.
Akbari-Moghanjoughi
, “
Hydrodynamic limit of Wigner-Poisson kinetic theory: Revisited
,”
Phys. Plasmas
22
,
022103
(
2015
).
268.
C. E.
Patrick
and
K. S.
Thygesen
, “
Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids—The renormalized ALDA and electron gas kernels
,”
J. Chem. Phys.
143
,
102802
(
2015
).
269.
A.
Ruzsinszky
,
N. K.
Nepal
,
J. M.
Pitarke
, and
J. P.
Perdew
, “
Constraint-based wave vector and frequency dependent exchange-correlation kernel of the uniform electron gas
,”
Phys. Rev. B
101
,
245135
(
2020
).
270.
A. D.
Kaplan
,
N. K.
Nepal
,
A.
Ruzsinszky
,
P.
Ballone
, and
J. P.
Perdew
, “
First-principles wave-vector- and frequency-dependent exchange-correlation kernel for jellium at all densities
,”
Phys. Rev. B
105
,
035123
(
2022
).
271.
J.
Crowell
and
R. H.
Ritchie
, “
Radiative decay of Coulomb-stimulated plasmons in spheres
,”
Phys. Rev.
172
,
436
440
(
1968
).
272.
S.
Raza
,
G.
Toscano
,
A.-P.
Jauho
,
M.
Wubs
, and
N. A.
Mortensen
, “
Unusual resonances in nanoplasmonic structures due to nonlocal response
,”
Phys. Rev. B
84
,
121412
(
2011
).
273.
A.
Eguiluz
,
S. C.
Ying
, and
J. J.
Quinn
, “
Influence of the electron density profile on surface plasmons in a hydrodynamic model
,”
Phys. Rev. B
11
,
2118
(
1975
).
274.
A.
Eguiluz
and
J. J.
Quinn
, “
Hydrodynamic model for surface plasmons in metals and degenerate semiconductors
,”
Phys. Rev. B
14
,
1347
1361
(
1976
).
275.
C.
Schwartz
and
W. L.
Schaich
, “
Hydrodynamic models of surface plasmons
,”
Phys. Rev. B
26
,
7008
7011
(
1982
).
276.
C.
David
and
F. J.
García de Abajo
, “
Surface plasmon dependence on the electron density profile at metal surfaces
,”
ACS Nano
8
,
9558
9566
(
2014
).
277.
A.
Kawabata
and
R.
Kubo
, “
Electronic properties of fine metallic particles. II. Plasma resonance absorption
,”
J. Phys. Soc. Jpn.
21
,
1765
1772
(
1966
).
278.
M.
Barma
and
V.
Subrahmanyam
, “
Optical absorption in small metal particles
,”
J. Phys.: Condens. Matter
1
,
7681
7688
(
1989
).
279.
C.
Yannouleas
and
R. A.
Broglia
, “
Landau damping and wall dissipation in large metal clusters
,”
Ann. Phys.
217
,
105
141
(
1992
).
280.
H.
Kurasawa
,
K.
Yabana
, and
T.
Suzuki
, “
Damping width of the Mie plasmon
,”
Phys. Rev. B
56
,
R10063
R10066
(
1997
).
281.
R. A.
Molina
,
D.
Weinmann
, and
R. A.
Jalabert
, “
Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles
,”
Phys. Rev. B
65
,
155427
(
2002
).
282.
G.
Weick
,
R. A.
Molina
,
D.
Weinmann
, and
R. A.
Jalabert
, “
Lifetime of the first and second collective excitations in metallic nanoparticles
,”
Phys. Rev. B
72
,
115410
(
2005
).
283.
X.
Li
,
D.
Xiao
, and
Z.
Zhang
, “
Landau damping of quantum plasmons in metal nanostructures
,”
New J. Phys.
15
,
023011
(
2013
).
284.
T. V.
Shahbazyan
, “
Landau damping of surface plasmons in metal nanostructures
,”
Phys. Rev. B
94
,
235431
(
2016
).
285.
J.
Khurgin
,
W.-Y.
Tsai
,
D. P.
Tsai
, and
G.
Sun
, “
Landau damping and limit to field confinement and enhancement in plasmonic dimers
,”
ACS Photonics
4
,
2871
2880
(
2017
).
286.
X.
You
,
S.
Ramakrishna
, and
T.
Seideman
, “
Origin of plasmon lineshape and enhanced hot electron generation in metal nanoparticles
,”
J. Phys. Chem. Lett.
9
,
141
145
(
2018
).
287.
X.
Li
,
H.
Fang
,
X.
Weng
,
L.
Zhang
,
X.
Dou
,
A.
Yang
, and
X.
Yuan
, “
Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics
,”
Opt. Express
23
,
29738
29745
(
2015
).
288.
N. A.
Mortensen
,
S.
Raza
,
M.
Wubs
,
T.
Søndergaard
, and
S. I.
Bozhevolnyi
, “
A generalized non-local optical response theory for plasmonic nanostructures
,”
Nat. Commun.
5
,
3809
(
2014
).
289.
P. J.
Feibelman
, “
Surface electromagnetic fields
,”
Prog. Surf. Sci.
12
,
287
407
(
1982
).
290.
A.
Liebsch
and
W. L.
Schaich
, “
Influence of a polarizable medium on the nonlocal optical response of a metal surface
,”
Phys. Rev. B
52
,
14219
14234
(
1995
).
291.
R.
van Leeuwen
and
E. J.
Baerends
, “
Exchange-correlation potential with correct asymptotic behavior
,”
Phys. Rev. A
49
,
2421
2431
(
1994
).
You do not currently have access to this content.