We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton–vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang–Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton–vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/e time of 0.5 ps, which is in good agreement with experimental results.

1.
T.
Pullerits
and
V.
Sundström
,
Acc. Chem. Res.
29
,
381
389
(
1996
).
2.
R.
van Grondelle
,
J. P.
Dekker
,
T.
Gillbro
, and
V.
Sundstrom
,
Biochim. Biophys. Acta
1187
,
1
65
(
1994
).
3.
G.
McDermott
,
S. M.
Prince
,
A. A.
Freer
,
A. M.
Hawthornthwaite-Lawless
,
M. Z.
Papiz
,
R. J.
Cogdell
, and
N. W.
Isaacs
,
Nature
374
,
517
(
1995
).
4.
X.
Hu
,
D.
Xu
,
K.
Hamer
,
K.
Schulten
,
J.
Koepke
, and
H.
Michel
,
Protein Sci.
4
,
1670
1682
(
1995
).
5.
J.
Koepke
,
X.
Hu
,
C.
Muenke
,
K.
Schulten
, and
H.
Michel
,
Structures
4
,
581
597
(
1996
).
6.
R. J.
Cogdell
,
N. W.
Isaacs
,
A. A.
Freer
,
J.
Arrelano
,
T. D.
Howard
,
M. Z.
Papiz
,
A. M.
Hawthornthwaite-Lawless
, and
S.
Prince
,
Prog. Biophys. Mol. Biol.
68
(
1
),
1
27
(
1997
).
7.
A.
Ishizaki
and
G. R.
Fleming
,
Annu. Rev. Condens. Matter Phys.
3
(
1
),
333
361
(
2012
).
8.
A.
Chenu
and
G. D.
Scholes
,
Annu. Rev. Phys. Chem.
66
(
1
),
69
96
(
2015
).
9.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H.-S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
,
Sci. Adv.
6
(
14
),
eaaz4888
(
2020
).
10.
S.
Kundu
and
N.
Makri
,
Annu. Rev. Phys. Chem.
73
(
1
),
349
375
(
2022
).
12.
T.
Brixner
,
T.
Mančal
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
J. Chem. Phys.
121
,
4221
(
2004
).
13.
T.
Pullerits
,
D.
Zigmantas
, and
V.
Sundström
,
Proc. Natl. Acad. Sci. U. S. A.
110
(
4
),
1148
1149
(
2013
).
14.
J. C.
Dean
and
G. D.
Scholes
,
Acc. Chem. Res.
50
(
11
),
2746
2755
(
2017
).
15.
H.-G.
Duan
,
V. I.
Prokhorenko
,
R. J.
Cogdell
,
K.
Ashraf
,
A. L.
Stevens
,
M.
Thorwart
, and
R. J. D.
Miller
,
Proc. Natl. Acad. Sci. U. S. A.
114
(
32
),
8493
8498
(
2017
).
16.
D. M.
Jonas
,
Annu. Rev. Phys. Chem.
69
(
1
),
327
352
(
2018
).
17.
T. A. A.
Oliver
,
N. H. C.
Lewis
, and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
10061
10066
(
2014
).
18.
N. H. C.
Lewis
and
G. R.
Fleming
,
J. Phys. Chem. Lett.
7
(
5
),
831
837
(
2016
).
19.
E. A.
Arsenault
,
Y.
Yoneda
,
M.
Iwai
,
K. K.
Niyogi
, and
G. R.
Fleming
,
Nat. Commun.
11
,
1460
(
2020
).
20.
M.
Chachisvilis
,
T.
Pullerits
,
M. R.
Jones
,
C. N.
Hunter
, and
V.
Sundström
,
Chem. Phys. Lett.
224
,
345
351
(
1994
).
21.
O.
Kühn
,
T.
Renger
,
V.
May
,
J.
Voigt
,
T.
Pullerits
, and
V.
Sundstrom
,
Trends Photochem. Photobiol.
4
,
213
256
(
1997
).
22.
V.
Sundström
,
T.
Pullerits
, and
R.
van Grondelle
,
J. Phys. Chem. B
103
,
2327
2346
(
1999
).
23.
J.
Ray
and
N.
Makri
,
J. Phys. Chem.
103
,
9417
9422
(
1999
).
24.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
254
(
2001
).
25.
V.
Novoderezhkin
,
M.
Wendling
, and
R.
van Grondelle
,
J. Phys. Chem. B
107
,
11534
11548
(
2003
).
26.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
2797
(
2006
).
27.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
(
22
),
225101
(
2009
).
28.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
41
),
17255
17260
(
2009
).
29.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
(
23
),
234110
(
2009
).
30.
S.
Jang
,
J. Chem. Phys.
131
(
16
),
164101
(
2009
).
31.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
32.
D.
Abramavicius
and
S.
Mukamel
,
J. Chem. Phys.
133
,
064510
(
2010
).
33.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
894
(
2010
).
34.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
,
184108
(
2010
).
35.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
134
(
9
),
095102
(
2011
).
36.
P.
Nalbach
,
A.
Ishizaki
,
G. R.
Fleming
, and
M.
Thorwart
,
New J. Phys.
13
,
063040
(
2011
).
37.
P.
Nalbach
,
D.
Braun
, and
M.
Thorwart
,
Phys. Rev. E
84
,
041926
(
2011
).
38.
J.
Wu
,
F.
Liu
,
Y.
Shen
,
J.
Cao
, and
R. J.
Silbey
,
New J. Phys.
12
(
10
),
105012
(
2010
).
39.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
1203
1208
(
2013
).
40.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
,
J. Chem. Phys.
147
,
154308
(
2017
).
41.
X.-T.
Liang
,
J. Chem. Phys.
141
(
4
),
044116
(
2014
).
42.
C.
Kreisbeck
,
T.
Kramer
, and
A.
Aspuru-Guzik
,
J. Chem. Theory Comput.
10
(
9
),
4045
4054
(
2014
).
43.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
78
(
2015
).
44.
A.
Sisto
,
C.
Stross
,
M. W.
van der Kamp
,
M.
O’Connor
,
S.
McIntosh-Smith
,
G. T.
Johnson
,
E. G.
Hohenstein
,
F. R.
Manby
,
D. R.
Glowacki
, and
T. J.
Martinez
,
Phys. Chem. Chem. Phys.
19
(
23
),
14924
14936
(
2017
).
45.
H. C. H.
Chan
,
O. E.
Gamel
,
G. R.
Fleming
, and
K. B.
Whaley
,
J. Phys. B: At., Mol. Opt. Phys.
51
(
5
),
054002
(
2018
).
46.
S. B.
Worster
,
C.
Stross
,
F. M. W. C.
Vaughan
,
N.
Linden
, and
F. R.
Manby
,
J. Phys. Chem. Lett.
10
(
23
),
7383
7390
(
2019
).
47.
S.-H.
Yeh
,
R. D.
Hoehn
,
M. A.
Allodi
,
G. S.
Engel
, and
S.
Kais
,
Proc. Natl. Acad. Sci. U. S. A.
116
(
37
),
18263
18268
(
2019
).
48.
W. C.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T. E.
Markland
,
J. Chem. Phys.
150
(
24
),
244109
(
2019
).
49.
P.
Bhattacharyya
and
G. R.
Fleming
,
J. Phys. Chem. Lett.
10
(
9
),
2081
2089
(
2019
).
50.
S.
Kundu
and
N.
Makri
,
J. Phys. Chem. Lett.
11
,
8783
8789
(
2020
).
51.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
3223
(
1979
).
52.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
581
(
1997
).
53.
W. H.
Miller
,
J. Phys. Chem.
113
,
1405
1415
(
2009
).
54.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
55.
Y.
Tanimura
,
J. Chem. Phys.
153
(
2
),
020901
(
2020
).
56.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
387
(
1948
).
57.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
58.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys.
24
,
118
173
(
1963
).
59.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
4610
(
1995
).
60.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
4618
(
1995
).
61.
P.
Nalbach
and
M.
Thorwart
,
J. Phys. B: At., Mol. Opt. Phys.
45
(
15
),
154009
(
2012
).
62.
R.
Lambert
and
N.
Makri
,
J. Chem. Phys.
137
,
22A552
(
2012
).
63.
R.
Lambert
and
N.
Makri
,
J. Chem. Phys.
137
,
22A553
(
2012
).
64.
A.
Bose
and
N.
Makri
,
J. Phys. Chem.
124
,
5028
5038
(
2020
).
65.
M.
Rätsep
,
Z.-L.
Cai
,
J. R.
Reimers
, and
A.
Freiberg
,
J. Chem. Phys.
134
,
024506
(
2011
).
66.
67.
68.
S.
Kundu
and
N.
Makri
,
J. Chem. Phys.
151
,
074110
(
2019
).
69.
S.
Kundu
and
N.
Makri
,
J. Chem. Phys.
153
,
044124
(
2020
).
70.
S.
Kundu
and
N.
Makri
,
Mol. Phys.
119
,
e1797200
(
2021
).
71.
72.
N.
Makri
,
J. Chem. Theory Comput.
16
,
4038
4049
(
2020
).
73.
N.
Makri
,
J. Chem. Theory Comput.
17
,
1
6
(
2021
).
74.
S.
Tretiak
,
C.
Middleton
,
V.
Chernyak
, and
S.
Mukamel
,
J. Phys. Chem. B
104
,
9540
9553
(
2000
).
76.
S. J.
Jang
and
B.
Mennucci
,
Rev. Mod. Phys.
90
(
3
),
035003
(
2018
).
77.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
(
2
),
374
456
(
1983
).
78.
C.
Olbrich
and
U.
Kleinekathöfer
,
J. Phys. Chem. B
114
(
38
),
12427
12437
(
2010
).
79.
C.
Olbrich
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
,
J. Phys. Chem. Lett.
2
(
14
),
1771
1776
(
2011
).
80.
N.
Makri
,
J. Math. Phys.
36
,
2430
2456
(
1995
).
81.
N.
Makri
,
Chem. Phys. Lett.
193
,
435
444
(
1992
).
82.
M. D.
Feit
,
J. A.
Fleck
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
83.
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
5069
(
1983
).
84.
S.
Chatterjee
and
N.
Makri
,
Phys. Chem. Chem. Phys.
23
,
5125
5133
(
2021
).
85.
S.
Hess
,
F.
Feldchtein
,
A.
Babin
,
I.
Nurgaleev
,
T.
Pullerits
,
A.
Sergeev
, and
V.
Sundström
,
Chem. Phys. Lett.
216
(
3
),
247
257
(
1993
).
86.
S.
Hess
,
M.
Chachisvilis
,
K.
Timpmann
,
M. R.
Jones
,
G. J.
Fowler
,
C. N.
Hunter
, and
V.
Sundström
,
Proc. Natl. Acad. Sci. U. S. A.
92
,
12333
12337
(
1995
).
87.
Y.-Z.
Ma
,
R. J.
Cogdell
, and
T.
Gillbro
,
J. Phys. Chem. B
101
(
6
),
1087
1095
(
1997
).
88.
A. L.
Tong
,
O. C.
Fiebig
,
M.
Nairat
,
D.
Harris
,
M.
Giansily
,
A.
Chenu
,
J. N.
Sturgis
, and
G. S.
Schlau-Cohen
,
J. Phys. Chem. B
124
(
8
),
1460
1469
(
2020
).
89.
J. A.
Ihalainen
,
J.
Linnanto
,
P.
Myllyperkiö
,
I. H. M.
van Stokkum
,
B.
Ücker
,
H.
Scheer
, and
J. E. I.
Korppi-Tommola
,
J. Phys. Chem. B
105
(
40
),
9849
9856
(
2001
).
90.
R. P.
Feynman
,
Statistical Mechanics
(
Addison-Wesley
,
Redwood City
,
1972
).
91.
J.
Shao
and
N.
Makri
,
Chem. Phys.
268
,
1
10
(
2001
).
92.
J.
Shao
and
N.
Makri
,
J. Chem. Phys.
116
,
507
514
(
2002
).
93.
R.
Silbey
and
R. A.
Harris
,
J. Chem. Phys.
80
,
2615
2617
(
1983
).
You do not currently have access to this content.