A precise understanding of the interfacial structure and dynamics is essential for the optimal design of various electrochemical devices. Herein, we propose a method for classical molecular dynamics simulations to deal with electrochemical interfaces with polarizable electrodes under the open circuit condition. Less attention has been given to electrochemical circuit conditions in computation despite being often essential for a proper assessment, especially comparison between different models. The present method is based on the chemical potential equalization principle, as is a method developed previously to deal with systems under the closed circuit condition. These two methods can be interconverted through the Legendre transformation so that the difference in the circuit conditions can be compared on the same footing. Furthermore, the electrode polarization effect can be correctly studied by comparing the present method with conventional simulations with the electrodes represented by fixed charges, since both of the methods describe systems under the open circuit condition. The method is applied to a parallel-plate capacitor composed of platinum electrodes and an aqueous electrolyte solution. The electrode polarization effects have an impact on the interfacial structure of the electrolyte solution. We found that the difference in circuit conditions significantly affects the dynamics of the electrolyte solution. The electric field at the charged electrode surface is poorly screened by the nonequilibrium solution structure in the open circuit condition, which accelerates the motion of the electrolyte solution.

1.
C.
Schütter
,
S.
Pohlmann
, and
A.
Balducci
,
Adv. Energy Mater.
9
,
1900334
(
2019
).
2.
H.
Shao
,
Y.-C.
Wu
,
Z.
Lin
,
P.-L.
Taberna
, and
P.
Simon
,
Chem. Soc. Rev.
49
,
3005
(
2020
).
3.
J.
Vatamanu
,
O.
Borodin
,
M.
Olguin
,
G.
Yushin
, and
D.
Bedrov
,
J. Mater. Chem. A
5
,
21049
(
2017
).
4.
Z.
Bo
,
C.
Li
,
H.
Yang
,
K.
Ostrikov
,
J.
Yan
, and
K.
Cen
,
Nano-Micro Lett.
10
,
33
(
2018
).
5.
S. K.
Reed
,
O. J.
Lanning
, and
P. A.
Madden
,
J. Chem. Phys.
126
,
084704
(
2007
).
6.
S. K.
Reed
,
P. A.
Madden
, and
A.
Papadopoulos
,
J. Chem. Phys.
128
,
124701
(
2008
).
7.
M. K.
Petersen
,
R.
Kumar
,
H. S.
White
, and
G. A.
Voth
,
J. Phys. Chem. C
116
,
4903
(
2012
).
8.
S.
Park
and
J. G.
McDaniel
,
J. Chem. Phys.
152
,
074709
(
2020
).
9.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Am. Chem. Soc.
132
,
14825
(
2010
).
10.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Phys. Chem. B
115
,
3073
(
2011
).
11.
C.
Merlet
,
M.
Salanne
, and
B.
Rotenberg
,
J. Phys. Chem. C
116
,
7687
(
2012
).
12.
C.
Merlet
,
C.
Péan
,
B.
Rotenberg
,
P. A.
Madden
,
P.
Simon
, and
M.
Salanne
,
J. Phys. Chem. Lett.
4
,
264
(
2013
).
13.
C.
Merlet
,
M.
Salanne
,
B.
Rotenberg
, and
P. A.
Madden
,
Electrochim. Acta
101
,
262
(
2013
).
14.
G.
Feng
,
J. S.
Zhang
, and
R.
Qiao
,
J. Phys. Chem. C
113
,
4549
(
2009
).
15.
M.
Buraschi
,
S.
Sansotta
, and
D.
Zahn
,
J. Phys. Chem. C
124
,
2002
(
2020
).
16.
H.
Yang
,
X.
Zhang
,
J.
Yang
,
Z.
Bo
,
M.
Hu
,
J.
Yan
, and
K.
Cen
,
J. Phys. Chem. Lett.
8
,
153
(
2017
).
17.
R. K.
Kalluri
,
D.
Konatham
, and
A.
Striolo
,
J. Phys. Chem. C
115
,
13786
(
2011
).
18.
R. K.
Kalluri
,
T. A.
Ho
,
J.
Biener
,
M. M.
Biener
, and
A.
Striolo
,
J. Phys. Chem. C
117
,
13609
(
2013
).
19.
R. K.
Kalluri
,
M. M.
Biener
,
M. E.
Suss
,
M. D.
Merrill
,
M.
Stadermann
,
J. G.
Santiago
,
T. F.
Baumann
,
J.
Biener
, and
A.
Striolo
,
Phys. Chem. Chem. Phys.
15
,
2309
(
2013
).
20.
Y.
Matsumi
,
H.
Nakano
, and
H.
Sato
,
Chem. Phys. Lett.
681
,
80
(
2017
).
21.
K.
Takahashi
,
H.
Nakano
, and
H.
Sato
,
J. Chem. Phys.
153
,
054126
(
2020
).
22.
T.
Liang
,
A. C.
Antony
,
S. A.
Akhade
,
M. J.
Janik
, and
S. B.
Sinnott
,
J. Phys. Chem. A
122
,
631
(
2018
).
23.
S.
Jo
,
S.-W.
Park
,
C.
Noh
, and
Y.
Jung
,
Electrochim. Acta
284
,
577
(
2018
).
24.
P.
Wu
,
J.
Huang
,
V.
Meunier
,
B. G.
Sumpter
, and
R.
Qiao
,
J. Phys. Chem. Lett.
3
,
1732
(
2012
).
25.
C.
Pinilla
,
M. G.
Del Pópolo
,
J.
Kohanoff
, and
R. M.
Lynden-Bell
,
J. Phys. Chem. B
111
,
4877
(
2007
).
26.
C.
Péan
,
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
B.
Daffos
,
M.
Salanne
, and
P.
Simon
,
ACS Nano
8
,
1576
(
2014
).
27.
K.
Takae
and
A.
Onuki
,
J. Phys. Chem. B
119
,
9377
(
2015
).
28.
S.-W.
Park
,
S.
Kim
, and
Y.
Jung
,
Phys. Chem. Chem. Phys.
17
,
29281
(
2015
).
29.
C.
Péan
,
B.
Rotenberg
,
P.
Simon
, and
M.
Salanne
,
Electrochim. Acta
206
,
504
(
2016
).
30.
K.
Xu
,
X.
Ji
,
B.
Zhang
,
C.
Chen
,
Y.
Ruan
,
L.
Miao
, and
J.
Jiang
,
Electrochim. Acta
196
,
75
(
2016
).
31.
C.
Noh
and
Y.
Jung
,
Phys. Chem. Chem. Phys.
21
,
6790
(
2019
).
32.
T.
Inagaki
and
M.
Nagaoka
,
J. Comput. Chem.
40
,
2131
(
2019
).
33.
B.
Demir
and
D. J.
Searles
,
Nanomaterials
10
,
2181
(
2020
).
34.
G. F. L.
Pereira
,
E. E.
Fileti
, and
L. J. A.
Siqueira
,
J. Phys. Chem. C
125
,
2318
(
2021
).
35.
36.
Z.
Bo
,
H.
Yang
,
S.
Zhang
,
J.
Yang
,
J.
Yan
, and
K.
Cen
,
Sci. Rep.
5
,
14652
(
2015
).
37.
O. J.
Lanning
and
P. A.
Madden
,
J. Phys. Chem. B
108
,
11069
(
2004
).
38.
G.
Feng
,
J.
Huang
,
B. G.
Sumpter
,
V.
Meunier
, and
R.
Qiao
,
Phys. Chem. Chem. Phys.
12
,
5468
(
2010
).
39.
J. I.
Siepmann
and
M.
Sprik
,
J. Chem. Phys.
102
,
511
(
1995
).
40.
S. W.
Coles
and
V. B.
Ivaništšev
,
J. Phys. Chem. C
123
,
3935
(
2019
).
41.
J. B.
Haskins
and
J. W.
Lawson
,
J. Chem. Phys.
144
,
184707
(
2016
).
42.
Z.
Wang
,
Y.
Yang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
,
J. Chem. Phys.
141
,
184102
(
2014
).
43.
J. F.
Smalley
,
C. V.
Krishnan
,
M.
Goldman
,
S. W.
Feldberg
, and
I.
Ruzic
,
J. Electroanal. Chem. Interfacial Electrochem.
248
,
255
(
1988
).
44.
J. F.
Smalley
,
M. D.
Newton
, and
S. W.
Feldberg
,
Electrochem. Commun.
2
,
832
(
2000
).
45.
P.
Sebastián
,
R.
Martínez-Hincapié
,
V.
Climent
, and
J. M.
Feliu
,
Electrochim. Acta
228
,
667
(
2017
).
46.
V.
Climent
,
B. A.
Coles
, and
R. G.
Compton
,
J. Phys. Chem. B
106
,
5258
(
2002
).
47.
V.
Climent
,
B. A.
Coles
,
R. G.
Compton
, and
J. M.
Feliu
,
J. Electroanal. Chem.
561
,
157
(
2004
).
48.
H.
Zhou
,
J. H.
Park
,
F.-R. F.
Fan
, and
A. J.
Bard
,
J. Am. Chem. Soc.
134
,
13212
(
2012
).
49.
A.
Trojánek
,
V.
Mareček
, and
Z.
Samec
,
Electrochem. Commun.
86
,
113
(
2018
).
50.
A. S.
Mogoda
,
Bull. Mater. Sci.
43
,
100
(
2020
).
51.
T.
Dufils
,
G.
Jeanmairet
,
B.
Rotenberg
,
M.
Sprik
, and
M.
Salanne
,
Phys. Rev. Lett.
123
,
195501
(
2019
).
52.
T.
Dufils
,
M.
Sprik
, and
M.
Salanne
,
J. Phys. Chem. Lett.
12
,
4357
(
2021
).
53.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford, New York
,
1989
).
54.
A. K.
Rappe
and
W. A.
Goddard
 III
,
J. Phys. Chem.
95
,
3358
(
1991
).
55.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
56.
D. M.
York
and
W.
Yang
,
J. Chem. Phys.
104
,
159
(
1996
).
57.
H.
Nakano
and
H.
Sato
,
J. Chem. Phys.
151
,
164123
(
2019
).
58.
M.
Zhang
and
R.
Fournier
,
J. Mol. Struct.: THEOCHEM
762
,
49
(
2006
).
59.
M.
Zhang
and
R.
Fournier
,
J. Phys. Chem. A
113
,
3162
(
2009
).
60.
T.
Milek
and
D.
Zahn
,
Nano Lett.
14
,
4913
(
2014
).
61.
J.
Oshiki
,
H.
Nakano
, and
H.
Sato
,
J. Chem. Phys.
154
,
144107
(
2021
).
62.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
63.
H.
Heinz
,
R. A.
Vaia
,
B. L.
Farmer
, and
R. R.
Naik
,
J. Phys. Chem. C
112
,
17281
(
2008
).
64.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
65.
M.
Patra
and
M.
Karttunen
,
J. Comput. Chem.
25
,
678
(
2004
).
66.
A.
Morita
and
S.
Kato
,
J. Chem. Phys.
108
,
6809
(
1998
).
67.
H.
Nakano
,
T.
Yamamoto
, and
S.
Kato
,
J. Chem. Phys.
132
,
044106
(
2010
).
68.
J.
Caldwell
,
L. X.
Dang
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
112
,
9144
(
1990
).
69.
G.
Maroulis
,
Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability
, Series in Computational, Numerical, and Mathematical Methods in Sciences and Engineering (
Imperial College Press
,
2006
).
70.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
71.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
72.
W.
Smith
,
T. R.
Forester
, and
I. T.
Todorov
,
The DL_POLY Classic (1.10) User Manual, CCLRC
(
Daresbury Laboratory
,
Daresbury, Warrington, UK
,
2017
).
73.
A. P.
Willard
,
S. K.
Reed
,
P. A.
Madden
, and
D.
Chandler
,
Faraday Discuss.
141
,
423
(
2009
).
74.
D. T.
Limmer
,
C.
Merlet
,
M.
Salanne
,
D.
Chandler
,
P. A.
Madden
,
R.
Van Roij
, and
B.
Rotenberg
,
Phys. Rev. Lett.
111
,
106102
(
2013
).
75.
V.
Raicu
and
Y.
Feldman
,
Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications
(
Oxford University Press
,
USA
,
2015
).
76.
J.
Chmiola
,
G.
Yushin
,
Y.
Gogotsi
,
C.
Portet
,
P.
Simon
, and
P. L.
Taberna
,
Science
313
,
1760
(
2006
).
77.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
Phys. Chem. Chem. Phys.
12
,
170
(
2010
).
78.
L.
Xing
,
J.
Vatamanu
,
O.
Borodin
, and
D.
Bedrov
,
J. Phys. Chem. Lett.
4
,
132
(
2013
).
79.
H. P.
Van Leeuwen
,
Electrochim. Acta
23
,
207
(
1978
).
80.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
(
Wiley
,
New York
,
2001
).
You do not currently have access to this content.