The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML) methods, such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction activation energies, less attention has been focused on how the accuracy of ML predictions filters through to predictions of macroscopic observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict activation energies, given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three different prototypical reaction networks: formamide decomposition, aldol reactions, and decomposition of 3-hydroperoxypropanal. We find that the kinetic modeling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations, but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when ML-based activation energies can be reliable and when one should take more care in applications to kinetics modeling.

1.
C. A.
Class
,
M.
Liu
,
A. G.
Vandeputte
, and
W. H.
Green
, “
Automatic mechanism generation for pyrolysis of di-tert-butyl sulfide
,”
Phys. Chem. Chem. Phys.
18
,
21651
21658
(
2016
).
2.
G. N.
Simm
and
M.
Reiher
, “
Context-driven exploration of complex chemical reaction networks
,”
J. Chem. Theory Comput.
13
,
6108
6119
(
2017
).
3.
Y.
Kim
,
J. W.
Kim
,
Z.
Kim
, and
W. Y.
Kim
, “
Efficient prediction of reaction paths through molecular graph and reaction network analysis
,”
Chem. Sci.
9
,
825
835
(
2018
).
4.
G. N.
Simm
,
A. C.
Vaucher
, and
M.
Reiher
, “
Exploration of reaction pathways and chemical transformation networks
,”
J. Phys. Chem. A
123
,
385
399
(
2019
).
5.
F.
Pietrucci
and
A. M.
Saitta
, “
Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15030
(
2015
).
6.
J.
Proppe
and
M.
Reiher
, “
Mechanism deduction from noisy chemical reaction networks
,”
J. Chem. Theory Comput.
15
,
357
370
(
2019
).
7.
A. L.
Dewyer
,
A. J.
Argüelles
, and
P. M.
Zimmerman
, “
Methods for exploring reaction space in molecular systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1354
(
2018
).
8.
C.
Robertson
,
I.
Ismail
, and
S.
Habershon
, “
Traversing dense networks of elementary chemical reactions to predict minimum-energy reaction mechanisms
,”
ChemSystemsChem
2
,
e1900047
(
2020
).
9.
C.
Robertson
,
R.
Hyland
,
A. J. D.
Lacey
,
S.
Havens
, and
S.
Habershon
, “
Identifying barrierless mechanisms for benzene formation in the interstellar medium using permutationally invariant reaction discovery
,”
J. Chem. Theory Comput.
17
,
2307
2322
(
2021
).
10.
I.
Ismail
,
H. B. V. A.
Stuttaford-Fowler
,
C.
Ochan Ashok
,
C.
Robertson
, and
S.
Habershon
, “
Automatic proposal of multistep reaction mechanisms using a graph-driven search
,”
J. Phys. Chem. A
123
,
3407
3417
(
2019
).
11.
C.
Robertson
and
S.
Habershon
, “
Fast screening of homogeneous catalysis mechanisms using graph-driven searches and approximate quantum chemistry
,”
Catal. Sci. Technol.
9
,
6357
6369
(
2019
).
12.
S.
Habershon
, “
Automated prediction of catalytic mechanism and rate law using graph-based reaction path sampling
,”
J. Chem. Theory Comput.
12
,
1786
1798
(
2016
).
13.
L. E.
Rush
,
P. G.
Pringle
, and
J. N.
Harvey
, “
Computational kinetics of cobalt-catalyzed hydroformylation
,”
Angew. Chem., Int. Ed.
53
,
8672
8676
(
2014
).
14.
D. T.
Gillespie
,
A.
Hellander
, and
L. R.
Petzold
, “
Perspective: Stochastic algorithms for chemical kinetics
,”
J. Chem. Phys.
138
,
170901
(
2013
).
15.
J. A.
Miller
and
S. J.
Klippenstein
, “
Master equation methods in gas phase chemical kinetics
,”
J. Phys. Chem. A
110
,
10528
10544
(
2006
).
16.
C. J.
Pope
and
J. A.
Miller
, “
Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels
,”
Proc. Combust. Inst.
28
,
1519
1527
(
2000
).
17.
K. J.
Laidler
,
Chemical Kinetics
, 3rd ed. (
Harper Collins
,
New York
,
1987
).
18.
G. R.
Wittreich
,
K.
Alexopoulos
, and
D. G.
Vlachos
, “
Microkinetic modeling of surface catalysis
,” in
Handbook of Materials Modeling: Applications: Current and Emerging Materials
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2020
), pp.
1377
1404
.
19.
S.
Blau
,
H.
Patel
,
E.
Spotte-Smith
,
X.
Xie
,
S.
Dwaraknath
, and
K.
Persson
, “
A chemically consistent graph architecture for massive reaction metworks applied to solid-electrolyte interphase formation
,”
Chem. Sci.
12
(
13
),
4931
4939
(
2021
).
20.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
, “
Current status of transition-state theory
,”
J. Phys. Chem.
100
,
12771
12800
(
1996
).
21.
K. J.
Laidler
and
M. C.
King
, “
Development of transition-state theory
,”
J. Phys. Chem.
87
,
2657
2664
(
1983
).
22.
N. E.
Henriksen
and
F. Y.
Hansen
,
Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics
(
Oxford University Press
,
2011
).
23.
C. F.
Goldsmith
and
R. H.
West
, “
Automatic generation of microkinetic mechanisms for heterogeneous catalysis
,”
J. Phys. Chem. C
121
,
9970
9981
(
2017
).
24.
L.
Zhang
,
Y.-Q.
Su
,
M.-W.
Chang
,
I. A. W.
Filot
, and
E. J. M.
Hensen
, “
Linear activation energy-reaction energy relations for LaBO3 (B = Mn, Fe, Co, Ni) supported single-atom platinum group metal catalysts for CO oxidation
,”
J. Phys. Chem. C
123
,
31130
31141
(
2019
).
25.
M.
Besora
and
F.
Maseras
, “
Microkinetic modeling in homogeneous catalysis
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1372
(
2018
).
26.
D. T.
Gillespie
, “
Stochastic simulation of chemical kinetics
,”
Annu. Rev. Phys. Chem.
58
,
35
55
(
2007
).
27.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
,
2340
2361
(
1977
).
28.
D. T.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
,
403
434
(
1976
).
29.
C. W.
Gao
,
J. W.
Allen
,
W. H.
Green
, and
R. H.
West
, “
Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms
,”
Comput. Phys. Commun.
203
,
212
225
(
2016
).
30.
M.
Keçeli
,
S. N.
Elliott
,
Y.-P.
Li
,
M. S.
Johnson
,
C.
Cavallotti
,
Y.
Georgievskii
,
W. H.
Green
,
M.
Pelucchi
,
J. M.
Wozniak
,
A. W.
Jasper
, and
S. J.
Klippenstein
, “
Automated computational thermochemistry for butane oxidation: A prelude to predictive automated combustion kinetics
,”
Proc. Combust. Inst.
37
,
363
371
(
2019
).
31.
R. J.
Gillis
and
W. H.
Green
, “
Thermochemistry prediction and automatic reaction mechanism generation for oxygenated sulfur systems: A case study of dimethyl sulfide oxidation
,”
ChemSystemsChem
2
,
e1900051
(
2020
).
32.
C. A.
Grambow
,
A.
Jamal
,
Y.-P.
Li
,
W. H.
Green
,
J.
Zádor
, and
Y. V.
Suleimanov
, “
Unimolecular reaction pathways of a γ-ketohydroperoxide from combined application of automated reaction discovery methods
,”
J. Am. Chem. Soc.
140
,
1035
1048
(
2018
).
33.
E.
Martínez-Núñez
, “
An automated method to find transition states using chemical dynamics simulations
,”
J. Comput. Chem.
36
,
222
234
(
2015
).
34.
E.
Martínez-Núñez
, “
An automated transition state search using classical trajectories initialized at multiple minima
,”
Phys. Chem. Chem. Phys.
17
,
14912
14921
(
2015
).
35.
J. A.
Varela
,
S. A.
Vázquez
, and
E.
Martínez-Núñez
, “
An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis
,”
Chem. Sci.
8
,
3843
3851
(
2017
).
36.
A.
Rodríguez
,
R.
Rodríguez‐Fernández
,
S. A.
Vázquez
,
G. L.
Barnes
,
J. J. P.
Stewart
, and
E.
Martínez‐Núñez
, “
tsscds2018: A code for automated discovery of chemical reaction mechanisms and solving the kinetics
,”
J. Comput. Chem.
39
,
1922
1930
(
2018
).
37.
S.
Kopec
,
E.
Martínez-Núñez
,
J.
Soto
, and
D.
Peláez
, “
vdw-TSSCDS—An automated and global procedure for the computation of stationary points on intermolecular potential energy surfaces
,”
Int. J. Quantum Chem.
119
,
e26008
(
2019
).
38.
P. M.
Zimmerman
, “
Automated discovery of chemically reasonable elementary reaction steps
,”
J. Comput. Chem.
34
,
1385
1392
(
2013
).
39.
P.
Zimmerman
, “
Reliable transition state searches integrated with the growing string method
,”
J. Chem. Theory Comput.
9
,
3043
3050
(
2013
).
40.
J. P.
Unsleber
and
M.
Reiher
, “
The exploration of chemical reaction networks
,”
Annu. Rev. Phys. Chem.
71
,
121
(
2020
).
41.
S.
Maeda
and
K.
Ohno
, “
Global mapping of equilibrium and transition structures on potential energy surfaces by the scaled hypersphere search method: Applications to ab initio surfaces of formaldehyde and propyne molecules
,”
J. Phys. Chem. A
109
,
5742
5753
(
2005
).
42.
K.
Ohno
and
S.
Maeda
, “
Automated exploration of reaction channels
,”
Phys. Scr.
78
,
058122
(
2008
).
43.
S.
Maeda
and
K.
Morokuma
, “
Finding reaction pathways of type A + B → X: Toward systematic prediction of reaction mechanisms
,”
J. Chem. Theory Comput.
7
,
2335
2345
(
2011
).
44.
S.
Habershon
, “
Sampling reactive pathways with random walks in chemical space: Applications to molecular dissociation and catalysis
,”
J. Chem. Phys.
143
,
094106
(
2015
).
45.
L.-P.
Wang
,
A.
Titov
,
R.
McGibbon
,
F.
Liu
,
V. S.
Pande
, and
T. J.
Martínez
, “
Discovering chemistry with an ab initio nanoreactor
,”
Nat. Chem.
6
,
1044
1048
(
2014
).
46.
B.
Peters
,
A.
Heyden
,
A. T.
Bell
, and
A.
Chakraborty
, “
A growing string method for determining transition states: Comparison to the nudged elastic band and string methods
,”
J. Chem. Phys.
120
,
7877
7886
(
2004
).
47.
X.
Zhu
,
K. C.
Thompson
, and
T. J.
Martínez
, “
Geodesic interpolation for reaction pathways
,”
J. Chem. Phys.
150
,
164103
(
2019
).
48.
F.
Perini
,
E.
Galligani
, and
R. D.
Reitz
, “
An analytical Jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms
,”
Energy Fuels
26
,
4804
4822
(
2012
).
49.
C. K.
Westbrook
,
W. J.
Pitz
,
O.
Herbinet
,
H. J.
Curran
, and
E. J.
Silke
, “
A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane
,”
Combust. Flame
156
,
181
199
(
2009
).
50.
J. A.
Miller
and
C. F.
Melius
, “
Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels
,”
Combust. Flame
91
,
21
39
(
1992
).
51.
J.
Zeng
,
L.
Cao
,
M.
Xu
,
T.
Zhu
, and
J. Z. H.
Zhang
, “
Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
,”
Nat. Commun.
11
,
5713
(
2020
).
52.
S.
Stocker
,
G.
Csányi
,
K.
Reuter
, and
J. T.
Margraf
, “
Machine learning in chemical reaction space
,”
Nat. Commun.
11
,
5505
(
2020
).
53.
M. E.
Jenkin
,
S. M.
Saunders
, and
M. J.
Pilling
, “
The tropospheric degradation of volatile organic compounds: A protocol for mechanism development
,”
Atmos. Environ.
31
,
81
104
(
1997
).
54.
K.
Takahashi
and
I.
Miyazato
, “
Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning
,”
J. Comput. Chem.
39
,
2405
2408
(
2018
).
55.
S.
Choi
,
Y.
Kim
,
J. W.
Kim
,
Z.
Kim
, and
W. Y.
Kim
, “
Feasibility of activation energy prediction of gas-phase reactions by machine learning
,”
Chem. - Eur. J.
24
,
12354
12358
(
2018
).
56.
C. A.
Grambow
,
L.
Pattanaik
, and
W. H.
Green
, “
Deep learning of activation energies
,”
J. Phys. Chem. Lett.
11
,
2992
2997
(
2020
).
57.

Kernel Methods for Activation Energy Prediction.

58.
W.
Jiang
,
X.
Xing
,
X.
Zhang
, and
M.
Mi
, “
Prediction of combustion activation energy of NaOH/KOH catalyzed straw pyrolytic carbon based on machine learning
,”
Renewable Energy
130
,
1216
1225
(
2019
).
59.
J.
Xu
,
X.-M.
Cao
, and
P.
Hu
, “
Improved prediction for the methane activation mechanism on rutile metal oxides by a machine learning model with geometrical descriptors
,”
J. Phys. Chem. C
123
,
28802
28810
(
2019
).
60.
D. C.
Elton
,
Z.
Boukouvalas
,
M. S.
Butrico
,
M. D.
Fuge
, and
P. W.
Chung
, “
Applying machine learning techniques to predict the properties of energetic materials
,”
Sci. Rep.
8
,
9059
(
2018
).
61.
C. A.
Grambow
,
L.
Pattanaik
, and
W. H.
Green
, “
Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry
,”
Sci. Data
7
,
137
(
2020
).
62.
J. N.
Bronsted
, “
Acid and basic catalysis
,”
Chem. Rev.
5
,
231
338
(
1928
).
63.
M. G.
Evans
and
M.
Polanyi
, “
Inertia and driving force of chemical reactions
,”
Trans. Faraday Soc.
34
,
11
24
(
1938
).
64.
J. E.
Sutton
and
D. G.
Vlachos
, “
Effect of errors in linear scaling relations and Brønsted–Evans–Polanyi relations on activity and selectivity maps
,”
J. Catal.
338
,
273
283
(
2016
).
65.
J. K.
Nørskov
,
T.
Bligaard
,
B.
Hvolbæk
,
F.
Abild-Pedersen
,
I.
Chorkendorff
, and
C. H.
Christensen
, “
The nature of the active site in heterogeneous metal catalysis
,”
Chem. Soc. Rev.
37
,
2163
2171
(
2008
).
66.
J. A.
Kammeraad
,
J.
Goetz
,
E. A.
Walker
,
A.
Tewari
, and
P. M.
Zimmerman
, “
What does the machine learn? Knowledge representations of chemical reactivity
,”
J. Chem. Inf. Model.
60
,
1290
1301
(
2020
).
67.
D.
Rogers
and
M.
Hahn
, “
Extended-connectivity fingerprints
,”
J. Chem. Inf. Model.
50
,
742
754
(
2010
).
68.
H. L.
Morgan
, “
The generation of a unique machine description for chemical structures—A technique developed at chemical abstracts service
,”
J. Chem. Doc.
5
,
107
113
(
1965
).
69.
P.
Schwaller
,
D.
Probst
,
A. C.
Vaucher
,
V. H.
Nair
,
T.
Laino
, and
J.-L.
Reymond
, “
Data-driven chemical reaction classification, fingerprinting and clustering using attention-based neural networks
,”
Nat. Mach. Intell.
3
(
2
),
144
152
(
2021
).
70.
J. N.
Wei
,
D.
Duvenaud
, and
A.
Aspuru-Guzik
, “
Neural networks for the prediction of organic chemistry reactions
,”
ACS Cent. Sci.
2
,
725
732
(
2016
).
71.
N.
Schneider
,
D. M.
Lowe
,
R. A.
Sayle
, and
G. A.
Landrum
, “
Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity
,”
J. Chem. Inf. Model.
55
,
39
53
(
2015
).
72.
C. E.
Rasmussen
and
C. K.
Williams
,
Gaussian Processes for Machine Learning
(
The MIT Press
,
Cambridge, MA
,
2006
).
73.
V. S.
Nguyen
,
H. L.
Abbott
,
M. M.
Dawley
,
T. M.
Orlando
,
J.
Leszczynski
, and
M. T.
Nguyen
, “
Theoretical study of formamide decomposition pathways
,”
J. Phys. Chem. A
115
,
841
851
(
2011
).
74.
A. R.
Singh
,
B. A.
Rohr
,
J. A.
Gauthier
, and
J. K.
Nørskov
, “
Predicting chemical reaction barriers with a machine learning model
,”
Catal. Lett.
149
,
2347
2354
(
2019
).
75.
Q.
Zhao
,
M.
Avdeev
,
L.
Chen
, and
S.
Shi
, “
Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors
,”
Sci. Bull.
66
,
1401
(
2021
).
76.
C. W.
Coley
,
W.
Jin
,
L.
Rogers
,
T. F.
Jamison
,
T. S.
Jaakkola
,
W. H.
Green
,
R.
Barzilay
, and
K. F.
Jensen
, “
A graph-convolutional neural network model for the prediction of chemical reactivity
,”
Chem. Sci.
10
,
370
377
(
2019
).
77.
G.
Landrum
, Rdkit: Open-source cheminformatics software,
2016
.
78.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
); avaialable at http://jmlr.org/papers/v12/pedregosa11a.html.
79.
M.
Stone
, “
Cross-validatory choice and assessment of statistical predictions
,”
J. R. Stat. Soc. Ser. B
36
,
111
147
(
1974
).
80.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
81.
J.
Zádor
and
H. N.
Najm
, “
Kinbot 1.0: A code for automatic pes exploration
,” Technical Report,
Sandia National Laboratories (SNL-CA)
,
Livermore, CA
,
2013
.
82.
A.
Jalan
,
I. M.
Alecu
,
R.
Meana-Pañeda
,
J.
Aguilera-Iparraguirre
,
K. R.
Yang
,
S. S.
Merchant
,
D. G.
Truhlar
, and
W. H.
Green
, “
New pathways for formation of acids and carbonyl products in low-temperature oxidation: The Korcek decomposition of γ-ketohydroperoxides
,”
J. Am. Chem. Soc.
135
,
11100
(
2013
).
83.
S.
Ryu
,
Y.
Kwon
, and
W. Y.
Kim
, “
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
,”
Chem. Sci.
10
,
8438
8446
(
2019
).
84.
A. A.
Peterson
,
R.
Christensen
, and
A.
Khorshidi
, “
Addressing uncertainty in atomistic machine learning
,”
Phys. Chem. Chem. Phys.
19
,
10978
10985
(
2017
).
85.
G.
Scalia
,
C. A.
Grambow
,
B.
Pernici
,
Y.-P.
Li
, and
W. H.
Green
, “
Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction
,”
J. Chem. Inf. Model.
60
,
2697
(
2020
).

Supplementary Material

You do not currently have access to this content.