By using the quasi-equilibrium Helmholtz energy, which is defined as the thermodynamic work in a quasi-static process, we investigate the thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states (adiabatic transition). Here, the work is defined by the change in energy from a steady state to another state under a time-dependent perturbation. In particular, the work for a quasi-static change is regarded as thermodynamic work. We employ a system–bath model that involves time-dependent perturbations in both the system and the system–bath interaction. We conduct numerical experiments for a three-stroke heat machine (a Kelvin–Planck cycle). For this purpose, we employ the hierarchical equations of motion (HEOM) approach. These experiments involve an adiabatic transition field that describes the operation of an adiabatic wall between the system and the bath. Thermodynamic–work diagrams for external fields and their conjugate variables, similar to the P–V diagram, are introduced to analyze the work done for the system in the cycle. We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator, whereas that for the adiabatic wall acts as a heat engine. This is a numerical manifestation of the Kelvin–Planck statement, which states that it is impossible to derive the mechanical effects from a single heat source. These HEOM simulations serve as a rigorous test of thermodynamic formulations because the second law of thermodynamics is only valid when the work involved in the operation of the adiabatic wall is treated accurately.

1.
J. W.
Gibbs
, “
On the equilibrium of heterogeneous substances
,”
Trans. Conn. Acad. Arts Sci.
3
,
108
248
(
1876
).
2.
J. W.
Gibbs
, “
On the equilibrium of heterogeneous substances
,”
Trans. Conn. Acad. Arts Sci.
3
,
343
524
(
1878
).
3.
H.
Helmholtz
,
Wissenschaftliche Abhandlungen
(
J. A. Barth
,
Leipzig
,
1882
).
4.
Y.
Oono
,
Perspectives on Statistical Thermodynamics
(
Cambridge University Press
,
2017
).
5.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
6.
C.
Jarzynski
, “
Nonequilibrium work theorem for a system strongly coupled to a thermal environment
,”
J. Stat. Mech.: Theory Exp.
2004
,
P09005
.
7.
C.
Jarzynski
, “
Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale
,”
Annu. Rev. Condens. Matter Phys.
2
,
329
351
(
2011
).
8.
H.
Tasaki
, “
Jarzynski relations for quantum systems and some applications
,” arXiv:cond-mat/0009244 [cond-mat.stat-mech] (
2000
).
9.
J.
Kurchan
, “
A quantum fluctuation theorem
,” arXiv:cond-mat/0007360 [cond-mat.stat-mech] (
2001
).
10.
G. E.
Crooks
, “
On the Jarzynski relation for dissipative quantum dynamics
,”
J. Stat. Mech.: Theory Exp.
2008
,
P10023
.
11.
S.
Yukawa
, “
A quantum analogue of the Jarzynski equality
,”
J. Phys. Soc. Jpn.
69
,
2367
2370
(
2000
).
12.
M.
Esposito
and
S.
Mukamel
, “
Fluctuation theorems for quantum master equations
,”
Phys. Rev. E
73
,
046129
(
2006
).
13.
M.
Esposito
,
U.
Harbola
, and
S.
Mukamel
, “
Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems
,”
Rev. Mod. Phys.
81
,
1665
1702
(
2009
).
14.
P.
Talkner
,
E.
Lutz
, and
P.
Hänggi
, “
Fluctuation theorems: Work is not an observable
,”
Phys. Rev. E
75
,
050102
(
2007
).
15.
M.
Campisi
,
P.
Talkner
, and
P.
Hänggi
, “
Fluctuation theorem for arbitrary open quantum systems
,”
Phys. Rev. Lett.
102
,
210401
(
2009
).
16.
M.
Campisi
,
P.
Hänggi
, and
P.
Talkner
, “
Colloquium: Quantum fluctuation relations: Foundations and applications
,”
Rev. Mod. Phys.
83
,
771
791
(
2011
).
17.
P.
Talkner
and
P.
Hänggi
, “
Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical
,”
Rev. Mod. Phys.
92
,
041002
(
2020
).
18.
G. E.
Crooks
, “
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
,”
Phys. Rev. E.
60
,
2721
(
1999
).
19.
D.
Segal
, “
Heat flow in nonlinear molecular junctions: Master equation analysis
,”
Phys. Rev. B
73
,
205415
(
2006
).
20.
K. A.
Velizhanin
,
H.
Wang
, and
M.
Thoss
, “
Heat transport through model molecular junctions: A multilayer multiconfiguration time-dependent Hartree approach
,”
Chem. Phys. Lett.
460
,
325
330
(
2008
).
21.
Y.
Dubi
and
M.
Di Ventra
, “
Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions
,”
Rev. Mod. Phys.
83
,
131
155
(
2011
).
22.
K.
Saito
and
T.
Kato
, “
Kondo signature in heat transfer via a local two-state system
,”
Phys. Rev. Lett.
111
,
214301
(
2013
).
23.
C.
Wang
,
J.
Ren
, and
J.
Cao
, “
Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling
,”
Sci. Rep.
5
,
11787
(
2015
).
24.
I.
de Vega
and
D.
Alonso
, “
Dynamics of non-Markovian open quantum systems
,”
Rev. Mod. Phys.
89
,
015001
(
2017
).
25.
R. S.
Whitney
, “
Non-Markovian quantum thermodynamics: Laws and fluctuation theorems
,”
Phys. Rev. B
98
,
085415
(
2018
).
26.
G.
Cohen
and
M.
Galperin
, “
Green’s function methods for single molecule junctions
,”
J. Chem. Phys.
152
,
090901
(
2020
).
27.
S.
Ryu
,
R.
López
,
L.
Serra
, and
D.
Sánchez
, “
Beating Carnot efficiency with periodically driven chiral conductors
,”
Nat. Commun.
13
,
2512
(
2022
).
28.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2002
), p.
xxi + 625
.
29.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
2012
).
30.
Thermodynamics in the Quantum Regime
, edited by
F.
Binder
,
L. A.
Correa
,
C.
Gogolin
,
J.
Anders
, and
G.
Adesso
(
Springer International Publishing
,
2018
).
31.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
32.
Y.
Tanimura
, “
Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities
,”
J. Chem. Phys.
141
,
044114
(
2014
).
33.
Y.
Tanimura
, “
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
,”
J. Chem. Phys.
142
,
144110
(
2015
).
34.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
35.
S.
Sakamoto
and
Y.
Tanimura
, “
Open quantum dynamics theory for non-equilibrium work: Hierarchical equations of motion approach
,”
J. Phys. Soc. Jpn.
90
,
033001
(
2021
).
36.
S.
Sakamoto
and
Y.
Tanimura
, “
Numerically ‘exact’ simulations of entropy production in the fully quantum regime: Boltzmann entropy vs von Neumann entropy
,”
J. Chem. Phys.
153
,
234107
(
2020
).
37.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence
,”
J. Chem. Phys.
143
,
064107
(
2015
).
38.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines
,”
J. Chem. Phys.
145
,
224105
(
2016
).
39.
L.
Song
and
Q.
Shi
, “
Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator
,”
Phys. Rev. B
95
,
064308
(
2017
).
40.
R.
Härtle
,
G.
Cohen
,
D. R.
Reichman
, and
A. J.
Millis
, “
Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach
,”
Phys. Rev. B
88
,
235426
(
2013
).
41.
K.
Goyal
,
X.
He
, and
R.
Kawai
, “
Entropy production of a small quantum system under strong coupling with an environment: A computational experiment
,”
Physica A
552
,
122627
(
2020
).
42.
M.
Xu
,
J. T.
Stockburger
, and
J.
Ankerhold
, “
Heat transport through a superconducting artificial atom
,”
Phys. Rev. B
103
,
104304
(
2021
).
43.
H. T.
Quan
,
Y.-x.
Liu
,
C. P.
Sun
, and
F.
Nori
, “
Quantum thermodynamic cycles and quantum heat engines
,”
Phys. Rev. E
76
,
031105
(
2007
).
44.
K.
Ono
,
S. N.
Shevchenko
,
T.
Mori
,
S.
Moriyama
, and
F.
Nori
, “
Analog of a quantum heat engine using a single-spin qubit
,”
Phys. Rev. Lett.
125
,
166802
(
2020
).
45.
B.
Gardas
and
S.
Deffner
, “
Thermodynamic universality of quantum Carnot engines
,”
Phys. Rev. E
92
,
042126
(
2015
).
46.
R.
Kosloff
and
A.
Levy
, “
Quantum heat engines and refrigerators: Continuous devices
,”
Annu. Rev. Phys. Chem.
65
,
365
393
(
2014
).
47.
R.
Kosloff
and
Y.
Rezek
, “
The quantum harmonic Otto cycle
,”
Entropy
19
,
136
(
2017
).
48.
D.
Gelbwaser-Klimovsky
,
W.
Niedenzu
, and
G.
Kurizki
, “
Chapter twelve—Thermodynamics of quantum systems under dynamical control
,”
Adv. At., Mol., Opt. Phys.
64
,
329
407
(
2015
).
49.
M.
Esposito
,
M. A.
Ochoa
, and
M.
Galperin
, “
Nature of heat in strongly coupled open quantum systems
,”
Phys. Rev. B
92
,
235440
(
2015
).
50.
N.
Seshadri
and
M.
Galperin
, “
Entropy and information flow in quantum systems strongly coupled to baths
,”
Phys. Rev. B
103
,
085415
(
2021
).
51.
E.
Aurell
, “
On work and heat in time-dependent strong coupling
,”
Entropy
19
,
595
(
2017
).
52.
Y. Y.
Xu
,
B.
Chen
, and
J.
Liu
, “
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
,”
Phys. Rev. E
97
,
022130
(
2018
).
53.
M.
Kilgour
and
D.
Segal
, “
Coherence and decoherence in quantum absorption refrigerators
,”
Phys. Rev. E
98
,
012117
(
2018
).
54.
S.
Lee
,
M.
Ha
,
J.-M.
Park
, and
H.
Jeong
, “
Finite-time quantum Otto engine: Surpassing the quasi-static efficiency due to friction
,”
Phys. Rev. E
101
,
022127
(
2020
).
55.
A.
Das
and
V.
Mukherjee
, “
Quantum-enhanced finite-time Otto cycle
,”
Phys. Rev. Res.
2
,
033083
(
2020
).
56.
R. S.
Johal
and
V.
Mehta
, “
Quantum heat engines with complex working media, complete Otto cycles and heuristics
,”
Entropy
23
,
1149
(
2021
).
57.
M.
Pezzutto
,
M.
Paternostro
, and
Y.
Omar
, “
An out-of-equilibrium non-Markovian quantum heat engine
,”
Quantum Sci. Technol.
4
,
025002
(
2019
).
58.
P.
Abiuso
and
V.
Giovannetti
, “
Non-Markov enhancement of maximum power for quantum thermal machines
,”
Phys. Rev. A
99
,
052106
(
2019
).
59.
M.
Wiedmann
,
J. T.
Stockburger
, and
J.
Ankerhold
, “
Non-Markovian dynamics of a quantum heat engine: Out-of-equilibrium operation and thermal coupling control
,”
New J. Phys.
22
,
033007
(
2020
).
60.
M.
Wiedmann
,
J. T.
Stockburger
, and
J.
Ankerhold
, “
Non-Markovian quantum Otto refrigerator
,”
Eur. Phys. J.: Spec. Top.
230
,
851
857
(
2021
).
61.
M.
Xu
,
J. T.
Stockburger
,
G.
Kurizki
, and
J.
Ankerhold
, “
Minimal quantum thermal machine in a bandgap environment: Non-Markovian features and anti-Zeno advantage
,”
New J. Phys.
24
,
035003
(
2022
).
62.
M.
Brenes
,
J. J.
Mendoza-Arenas
,
A.
Purkayastha
,
M. T.
Mitchison
,
S. R.
Clark
, and
J.
Goold
, “
Tensor-network method to simulate strongly interacting quantum thermal machines
,”
Phys. Rev. X
10
,
031040
(
2020
).
63.
N.
Pancotti
,
M.
Scandi
,
M. T.
Mitchison
, and
M.
Perarnau-Llobet
, “
Speed-ups to isothermality: Enhanced quantum thermal machines through control of the system-bath coupling
,”
Phys. Rev. X
10
,
031015
(
2020
).
64.
L. M.
Cangemi
,
V.
Cataudella
,
G.
Benenti
,
M.
Sassetti
, and
G.
De Filippis
, “
Violation of thermodynamics uncertainty relations in a periodically driven work-to-work converter from weak to strong dissipation
,”
Phys. Rev. B
102
,
165418
(
2020
).
65.
B. P. E.
Clapeyron
, “
Memoire sur la puissance motrice de la chaleur
,”
J. Ec. R. Polytech.
14
,
153
190
(
1834
).
66.
S.
An
,
J.-N.
Zhang
,
M.
Um
,
D.
Lv
,
Y.
Lu
,
J.
Zhang
,
Z.-Q.
Yin
,
H. T.
Quan
, and
K.
Kim
, “
Experimental test of the quantum Jarzynski equality with a trapped-ion system
,”
Nat. Phys.
11
,
193
(
2015
).
67.
S.
An
,
D.
Lv
,
A.
del Campo
, and
K.
Kim
, “
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
,”
Nat. Commun.
7
,
12999
(
2016
).
68.
N. V.
Vitanov
,
A. A.
Rangelov
,
B. W.
Shore
, and
K.
Bergmann
, “
Stimulated Raman adiabatic passage in physics, chemistry, and beyond
,”
Rev. Mod. Phys.
89
,
015006
(
2017
).
69.
E. A.
Hoffmann
,
S.
Fahlvik
,
C.
Thelander
,
M.
Leijnse
, and
H.
Linke
, “
A quantum-dot heat engine operating close to the thermodynamic efficiency limits
,”
Nat. Nanotechnol.
13
,
920
924
(
2018
).
70.
J.
Bengtsson
,
M. N.
Tengstrand
,
A.
Wacker
,
P.
Samuelsson
,
M.
Ueda
,
H.
Linke
, and
S. M.
Reimann
, “
Quantum Szilard engine with attractively interacting bosons
,”
Phys. Rev. Lett.
120
,
100601
(
2018
).
71.
M.
Josefsson
,
A.
Svilans
,
H.
Linke
, and
M.
Leijnse
, “
Optimal power and efficiency of single quantum dot heat engines: Theory and experiment
,”
Phys. Rev. B
99
,
235432
(
2019
).
72.
D.
Prete
,
P. A.
Erdman
,
V.
Demontis
,
V.
Zannier
,
D.
Ercolani
,
L.
Sorba
,
F.
Beltram
,
F.
Rossella
,
F.
Taddei
, and
S.
Roddaro
, “
Thermoelectric conversion at 30 K in InAs/InP nanowire quantum dots
,”
Nano Lett.
19
,
3033
3039
(
2019
).
73.
Y.-H.
Ma
,
R.-X.
Zhai
,
J.
Chen
,
C. P.
Sun
, and
H.
Dong
, “
Experimental test of the 1/τ-scaling entropy generation in finite-time thermodynamics
,”
Phys. Rev. Lett.
125
,
210601
(
2020
).
74.
A. G.
de Oliveira
,
R. M.
Gomes
,
V. C. C.
Brasil
,
N.
Rubiano da Silva
,
L. C.
Céleri
, and
P. H.
Souto Ribeiro
, “
Full thermalization of a photonic qubit
,”
Phys. Lett. A
384
,
126933
(
2020
).
75.
S.
Hernández-Gómez
,
N.
Staudenmaier
,
M.
Campisi
, and
N.
Fabbri
, “
Experimental test of fluctuation relations for driven open quantum systems with an NV center
,”
New J. Phys.
23
,
065004
(
2021
).
76.
W.
Thomson
, “
II. On the dynamical theory of heat, with numerical results deduced from Mr. Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam
,”
Philos. Mag.
4
,
1852
(
1851
).
77.
A.
Lenard
, “
Thermodynamical proof of the Gibbs formula for elementary quantum systems
,”
J. Stat. Phys.
19
,
575
(
1978
).
78.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
79.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
6687
(
1990
).
80.
A.
Ishizaki
and
Y.
Tanimura
, “
Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach
,”
J. Phys. Soc. Jpn.
74
,
3131
3134
(
2005
).
81.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
, “
Communication: Padé spectrum decomposition of Fermi function and Bose function
,”
J. Chem. Phys.
133
,
101106
(
2010
).
82.
H. T.
Quan
,
Y. D.
Wang
,
Y.-x.
Liu
,
C. P.
Sun
, and
F.
Nori
, “
Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits
,”
Phys. Rev. Lett.
97
,
180402
(
2006
).
83.
K.
Maruyama
,
F.
Nori
, and
V.
Vedral
, “
Colloquium: The physics of Maxwell’s demon and information
,”
Rev. Mod. Phys.
81
,
1
23
(
2009
).
You do not currently have access to this content.