The structure of the double-layer formed at the surface of carbon electrodes is governed by the interactions between the electrode and the electrolyte species. However, carbon is notoriously difficult to simulate accurately, even with well-established methods such as electronic density functional theory and molecular dynamics. Here, we focus on the important case of a lithium ion in contact with the surface of graphite, and we perform a series of reference quantum Monte Carlo calculations that allow us to benchmark various electronic density functional theory functionals. We then fit an accurate carbon–lithium pair potential, which is used in molecular density functional theory calculations to determine the free energy of the adsorption of the ion on the surface in the presence of water. The adsorption profile in aqueous solution differs markedly from the gas phase results, which emphasize the role of the solvent on the properties of the double-layer.

1.
M.
Armand
and
J.-M.
Tarascon
, “
Building better batteries
,”
Nature
451
,
652
657
(
2008
).
2.
X.
Dou
,
I.
Hasa
,
D.
Saurel
,
C.
Vaalma
,
L.
Wu
,
D.
Buchholz
,
D.
Bresser
,
S.
Komaba
, and
S.
Passerini
, “
Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry
,”
Mater. Today
23
,
87
104
(
2019
).
3.
P.
Simon
and
Y.
Gogotsi
, “
Capacitive energy storage in nanostructured carbon-electrolyte systems
,”
Acc. Chem. Res.
46
,
1094
1103
(
2013
).
4.
M.
Salanne
,
B.
Rotenberg
,
K.
Naoi
,
K.
Kaneko
,
P.-L.
Taberna
,
C. P.
Grey
,
B.
Dunn
, and
P.
Simon
, “
Efficient storage mechanisms for building better supercapacitors
,”
Nat. Energy
1
,
16070
(
2016
).
5.
A.
Striolo
,
A.
Michaelides
, and
L.
Joly
, “
The carbon-water interface: Modeling challenges and opportunities for the water-energy nexus
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
533
556
(
2016
).
6.
E. H.
Lahrar
,
P.
Simon
, and
C.
Merlet
, “
Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance
,”
J. Chem. Phys.
155
,
184703
(
2021
).
7.
F.
Valencia
,
A. H.
Romero
,
F.
Ancilotto
, and
P. L.
Silvestrelli
, “
Lithium adsorption on graphite from density functional theory calculations
,”
J. Phys. Chem. B
110
,
14832
14841
(
2006
).
8.
K.
Rytkönen
,
J.
Akola
, and
M.
Manninen
, “
Density functional study of alkali-metal atoms and monolayers on graphite (0001)
,”
Phys. Rev. B
75
,
075401
(
2007
).
9.
X.
Fan
,
W. T.
Zheng
,
J.-L.
Kuo
, and
D. J.
Singh
, “
Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries
,”
ACS Appl. Mater. Interfaces
5
,
7793
7797
(
2013
).
10.
L.
Scalfi
,
M.
Salanne
, and
B.
Rotenberg
, “
Molecular simulation of electrode-solution interfaces
,”
Annu. Rev. Phys. Chem.
72
,
189
212
(
2021
).
11.
Y. S.
Al-Hamdani
,
D.
Alfè
, and
A.
Michaelides
, “
How strongly do hydrogen and water molecules stick to carbon nanomaterials?
,”
J. Chem. Phys.
146
,
094701
(
2017
).
12.
J. G.
Brandenburg
,
A.
Zen
,
D.
Alfè
, and
A.
Michaelides
, “
Interaction between water and carbon nanostructures: How good are current density functional approximations?
,”
J. Chem. Phys.
151
,
164702
(
2019
).
13.
C.
Merlet
,
M.
Salanne
,
B.
Rotenberg
, and
P. A.
Madden
, “
Influence of solvation on the structural and capacitive properties of electrical double layer capacitors
,”
Electrochim. Acta
101
,
262
271
(
2013
).
14.
G.
Jeanmairet
,
B.
Rotenberg
,
D.
Borgis
, and
M.
Salanne
, “
Study of a water-graphene capacitor with molecular density functional theory
,”
J. Chem. Phys.
151
,
124111
(
2019
).
15.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
16.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
83
(
2001
).
17.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
, “
A diffusion Monte Carlo algorithm with very small time-step errors
,”
J. Chem. Phys.
99
,
2865
2890
(
1993
).
18.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D. P.
Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
,
195901
(
2018
).
19.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
20.
E.
Mostaani
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Quantum Monte Carlo calculation of the binding energy of bilayer graphene
,”
Phys. Rev. Lett.
115
,
115501
(
2015
).
21.
H.
Shin
,
J.
Kim
,
H.
Lee
,
O.
Heinonen
,
A.
Benali
, and
Y.
Kwon
, “
Nature of interlayer binding and stacking of sp-sp2 hybridized carbon layers: A quantum Monte Carlo study
,”
J. Chem. Theory Comput.
13
,
5639
5646
(
2017
).
22.
C.
Lin
,
F. H.
Zong
, and
D. M.
Ceperley
, “
Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms
,”
Phys. Rev. E
64
,
016702
(
2001
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
24.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
25.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
, Jr.
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A. O.
de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
26.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
, “
Energy-consistent pseudopotentials for quantum Monte Carlo calculations
,”
J. Chem. Phys.
126
,
234105
(
2007
).
27.
J.
Toulouse
and
C. J.
Umrigar
, “
Optimization of quantum Monte Carlo wave functions by energy minimization
,”
J. Chem. Phys.
126
,
084102
(
2007
).
28.
P.
Ganesh
,
J.
Kim
,
C.
Park
,
M.
Yoon
,
F. A.
Reboredo
, and
P. R. C.
Kent
, “
Binding and diffusion of lithium in graphite: Quantum Monte Carlo benchmarks and validation of van der Waals density functional methods
,”
J. Chem. Theory Comput.
10
,
5318
5323
(
2014
).
29.
M.
Casula
,
S.
Moroni
,
S.
Sorella
, and
C.
Filippi
, “
Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited
,”
J. Chem. Phys.
132
,
154113
(
2010
).
30.
A.
Zen
,
S.
Sorella
,
M. J.
Gillan
,
A.
Michaelides
, and
D.
Alfè
, “
Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
,”
Phys. Rev. B
93
,
241118
(
2016
).
31.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
(
1980
).
32.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
34.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
35.
T.
Thonhauser
,
S.
Zuluaga
,
C. A.
Arter
,
K.
Berland
,
E.
Schröder
, and
P.
Hyldgaard
, “
Spin signature of nonlocal correlation binding in metal-organic frameworks
,”
Phys. Rev. Lett.
115
,
136402
(
2015
).
36.
T.
Thonhauser
,
V. R.
Cooper
,
S.
Li
,
A.
Puzder
,
P.
Hyldgaard
, and
D. C.
Langreth
, “
Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond
,”
Phys. Rev. B
76
,
125112
(
2007
).
37.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
, “
Van der Waals forces in density functional theory: A review of the VdW-DF method
,”
Rep. Prog. Phys.
78
,
066501
(
2015
).
38.
S.
Lehtola
,
C.
Steigemann
,
M. J. T.
Oliveira
, and
M. A. L.
Marques
, “
Recent developments in libxc—A comprehensive library of functionals for density functional theory
,”
SoftwareX
7
,
1
5
(
2018
).
39.
A. M.
Rappe
,
K. M.
Rabe
,
E.
Kaxiras
, and
J. D.
Joannopoulos
, “
Optimized pseudopotentials
,”
Phys. Rev. B
41
,
1227
1230
(
1990
).
40.
G.
Jeanmairet
,
M.
Levesque
,
R.
Vuilleumier
, and
D.
Borgis
, “
Molecular density functional theory of water
,”
J. Phys. Chem. Lett.
4
,
619
624
(
2013
).
41.
L.
Ding
,
M.
Levesque
,
D.
Borgis
, and
L.
Belloni
, “
Efficient molecular density functional theory using generalized spherical harmonics expansions
,”
J. Chem. Phys.
147
,
094107
(
2017
).
42.
J. I.
Siepmann
and
M.
Sprik
, “
Influence of surface-topology and electrostatic potential on water electrode systems
,”
J. Chem. Phys.
102
,
511
524
(
1995
).
43.
L.
Scalfi
,
D. T.
Limmer
,
A.
Coretti
,
S.
Bonella
,
P. A.
Madden
,
M.
Salanne
, and
B.
Rotenberg
, “
Charge fluctuations from molecular simulations in the constant-potential ensemble
,”
Phys. Chem. Chem. Phys.
22
,
10480
10489
(
2020
).
44.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
(
1979
).
45.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
2006
).
46.
D.
Borgis
,
S.
Luukkonen
,
L.
Belloni
, and
G.
Jeanmairet
, “
Simple parameter-free bridge functionals for molecular density functional theory. Application to hydrophobic solvation
,”
J. Phys. Chem. B
124
,
6885
6893
(
2020
).
47.
D.
Borgis
,
S.
Luukkonen
,
L.
Belloni
, and
G.
Jeanmairet
, “
Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional
,”
J. Chem. Phys.
155
,
024117
(
2021
).
48.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
,
1345
1352
(
2003
).
49.
J.
Aqvist
, “
Ion-water interaction potentials derived from free energy perturbation simulations
,”
J. Phys. Chem.
94
,
8021
8024
(
1990
).
50.
A.
Marin-Laflèche
,
M.
Haefele
,
L.
Scalfi
,
A.
Coretti
,
T.
Dufils
,
G.
Jeanmairet
,
S.
Reed
,
A.
Serva
,
R.
Berthin
,
C.
Bacon
,
S.
Bonella
,
B.
Rotenberg
,
P.
Madden
, and
M.
Salanne
, “
MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems
,”
J. Open Source Software
5
,
2373
(
2020
).
51.
P.
Loche
,
C.
Ayaz
,
A.
Schlaich
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Breakdown of linear dielectric theory for the interaction between hydrated ions and graphene
,”
J. Phys. Chem. Lett.
9
,
6463
6468
(
2018
).
52.
G.
Pireddu
,
L.
Scalfi
, and
B.
Rotenberg
, “
A molecular perspective on induced charges on a metallic surface
,”
J. Chem. Phys.
155
,
204705
(
2021
).
53.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).

Supplementary Material

You do not currently have access to this content.