The chemical versatility and modular nature of Metal–Organic Frameworks (MOFs) make them unique hybrid inorganic–organic materials for several important applications. From a computational point of view, ab initio modeling of MOFs is a challenging and demanding task, in particular, when the system reaches the size of gigantic MOFs as MIL-100 and MIL-101 (where MIL stands for Materials Institute Lavoisier) with several thousand atoms in the unit cell. Here, we show how such complex systems can be successfully tackled by a recently proposed class of composite electronic structure methods revised for solid-state calculations. These methods rely on HF/density functional theory hybrid functionals (i.e., PBEsol0 and HSEsol) combined with a double-zeta quality basis set. They are augmented with semi-classical corrections to take into account dispersive interactions (D3 scheme) and the basis set superposition error (gCP). The resulting methodologies, dubbed “sol-3c,” are cost-effective yet reach the hybrid functional accuracy. Here, sol-3c methods are effectively applied to predict the structural, vibrational, electronic, and adsorption properties of some of the most common MOFs. Calculations are feasible even on very large MOFs containing more than 2500 atoms in the unit cell as MIL-100 and MIL-101 with reasonable computing resources. We propose to use our composite methods for the routine in silico screening of MOFs targeting properties beyond plain structural features.

1.
J. R.
Long
and
O. M.
Yaghi
, “
The pervasive chemistry of metal–organic frameworks
,”
Chem. Soc. Rev.
38
(
5
),
1213
1214
(
2009
).
2.
S. R.
Batten
,
N. R.
Champness
,
X.-M.
Chen
,
J.
Garcia-Martinez
,
S.
Kitagawa
,
L.
Öhrström
,
M.
O’Keeffe
,
M.
Paik Suh
, and
J.
Reedijk
, “
Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)
,”
Pure Appl. Chem.
85
(
8
),
1715
1724
(
2013
).
3.
S.
Ma
and
H.-C.
Zhou
, “
Gas storage in porous metal–organic frameworks for clean energy applications
,”
Chem. Commun.
46
(
1
),
44
53
(
2010
).
4.
H.
Li
,
K.
Wang
,
Y.
Sun
,
C. T.
Lollar
,
J.
Li
, and
H.-C.
Zhou
, “
Recent advances in gas storage and separation using metal–organic frameworks
,”
Mater. Today
21
(
2
),
108
121
(
2018
).
5.
M. A.
Nasalevich
,
M.
van der Veen
,
F.
Kapteijn
, and
J.
Gascon
, “
Metal–organic frameworks as heterogeneous photocatalysts: Advantages and challenges
,”
CrystEngComm
16
(
23
),
4919
4926
(
2014
).
6.
P.
Kumar
,
A.
Deep
, and
K.-H.
Kim
, “
Metal organic frameworks for sensing applications
,”
TrAC, Trends Anal. Chem.
73
,
39
53
(
2015
).
7.
V.
Stavila
,
A. A.
Talin
, and
M. D.
Allendorf
, “
MOF-based electronic and opto-electronic devices
,”
Chem. Soc. Rev.
43
(
16
),
5994
6010
(
2014
).
8.
M. R.
Ryder
,
L.
Donà
,
J. G.
Vitillo
, and
B.
Civalleri
, “
Understanding and controlling the dielectric response of metal–organic frameworks
,”
ChemPlusChem
83
(
4
),
308
316
(
2018
).
9.
P.
Horcajada
,
T.
Chalati
,
C.
Serre
,
B.
Gillet
,
C.
Sebrie
,
T.
Baati
,
J. F.
Eubank
,
D.
Heurtaux
,
P.
Clayette
,
C.
Kreuz
 et al, “
Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
,”
Nat. Mater.
9
(
2
),
172
178
(
2010
).
10.
P.
Horcajada
,
C.
Serre
,
M.
Vallet-Regí
,
M.
Sebban
,
F.
Taulelle
, and
G.
Férey
, “
Metal–organic frameworks as efficient materials for drug delivery
,”
Angew. Chem., Int. Ed.
118
(
36
),
6120
6124
(
2006
).
11.
Y.
Inokuma
,
S.
Yoshioka
,
J.
Ariyoshi
,
T.
Arai
,
Y.
Hitora
,
K.
Takada
,
S.
Matsunaga
,
K.
Rissanen
, and
M.
Fujita
, “
X-ray analysis on the nanogram to microgram scale using porous complexes
,”
Nature
495
,
461
466
(
2013
).
12.
13.
P. Z.
Moghadam
,
A.
Li
,
S. B.
Wiggin
,
A.
Tao
,
A. G. P.
Maloney
,
P. A.
Wood
,
S. C.
Ward
, and
D.
Fairen-Jimenez
, “
Development of a cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future
,”
Chem. Mater.
29
(
7
),
2618
2625
(
2017
).
14.
P. Z.
Moghadam
,
A.
Li
,
X.-W.
Liu
,
R.
Bueno-Perez
,
S.-D.
Wang
,
S. B.
Wiggin
,
P. A.
Wood
, and
D.
Fairen-Jimenez
, “
Targeted classification of metal–organic frameworks in the cambridge structural database (CSD)
,”
Chem. Sci.
11
(
32
),
8373
8387
(
2020
).
15.
Y. G.
Chung
,
E.
Haldoupis
,
B. J.
Bucior
,
M.
Haranczyk
,
S.
Lee
,
H.
Zhang
,
K. D.
Vogiatzis
,
M.
Milisavljevic
,
S.
Ling
,
J. S.
Camp
,
B.
Slater
,
J. I.
Siepmann
,
D. S.
Sholl
, and
R. Q.
Snurr
, “
Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019
,”
J. Chem. Eng. Data
64
(
12
),
5985
5998
(
2019
).
16.
Y.
Liu
,
J.-H.
Her
,
A.
Dailly
,
A. J.
Ramirez-Cuesta
,
D. A.
Neumann
, and
C. M.
Brown
, “
Reversible structural transition in MIL-53 with large temperature hysteresis
,”
J. Am. Chem. Soc.
130
(
35
),
11813
11818
(
2008
).
17.
G.
Férey
,
C.
Serre
,
C.
Mellot-Draznieks
,
F.
Millange
,
S.
Surblé
,
J.
Dutour
, and
I.
Margiolaki
, “
A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction
,”
Angew. Chem., Int. Ed.
43
,
6296
6301
(
2004
).
18.
J.
An
,
O. K.
Farha
,
J. T.
Hupp
,
E.
Pohl
,
J. I.
Yeh
, and
N. L.
Rosi
, “
Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework
,”
Nat. Commun.
3
(
1
),
604
(
2012
).
19.
T.
Li
,
M. T.
Kozlowski
,
E. A.
Doud
,
M. N.
Blakely
, and
N. L.
Rosi
, “
Stepwise ligand exchange for the preparation of a family of mesoporous MOFs
,”
J. Am. Chem. Soc.
135
(
32
),
11688
11691
(
2013
).
20.
J. L.
Mancuso
,
A. M.
Mroz
,
K. N.
Le
, and
C. H.
Hendon
, “
Electronic structure modeling of metal–organic frameworks
,”
Chem. Rev.
120
(
16
),
8641
8715
(
2020
).
21.
R.
Sure
and
S.
Grimme
, “
Corrected small basis set Hartree-Fock method for large systems
,”
J. Comput. Chem.
34
,
1672
1685
(
2013
).
22.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
, “
Consistent structures and interactions by density functional theory with small atomic orbital basis sets
,”
J. Chem. Phys.
143
,
054107
(
2015
).
23.
J. G.
Brandenburg
,
E.
Caldeweyher
, and
S.
Grimme
, “
Screened exchange hybrid density functional for accurate and efficient structures and interaction energies
,”
Phys. Chem. Chem. Phys.
18
,
15519
15523
(
2016
).
24.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
, “
B97-3c: A revised low-cost variant of the B97-D density functional method
,”
J. Chem. Phys.
148
,
064104
(
2018
).
25.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
, “
r2SCAN-3c: An efficient ‘swiss army knife’ composite electronic-structure method
,”
J. Chem. Phys.
154
,
064103
(
2021
).
26.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
27.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
,
034112
(
2017
).
28.
E.
Caldeweyher
,
J.-M.
Mewes
,
S.
Ehlert
, and
S.
Grimme
, “
Extension and evaluation of the D4 London-dispersion model for periodic systems
,”
Phys. Chem. Chem. Phys.
22
(
16
),
8499
8512
(
2020
).
29.
H.
Kruse
and
S.
Grimme
, “
A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems
,”
J. Chem. Phys.
136
,
154101
(
2012
).
30.
J. G.
Brandenburg
,
M.
Alessio
,
B.
Civalleri
,
M. F.
Peintinger
,
T.
Bredow
, and
S.
Grimme
, “
Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations
,”
J. Phys. Chem. A
117
,
9282
9292
(
2013
).
31.
G. J. O.
Beran
, “
Modeling polymorphic molecular crystals with electronic structure theory
,”
Chem. Rev.
116
(
9
),
5567
5613
(
2016
).
32.
E.
Caldeweyher
and
J. G.
Brandenburg
, “
Simplified DFT methods for consistent structures and energies of large systems
,”
J. Phys.: Condens. Matter
30
,
213001
(
2018
).
33.
L.
Doná
,
J. G.
Brandenburg
, and
B.
Civalleri
, “
Extending and assessing composite electronic structure methods to the solid state
,”
J. Chem. Phys.
151
,
121101
(
2019
).
34.
L.
Donà
,
J. G.
Brandenburg
,
I. J.
Bush
, and
B.
Civalleri
, “
Cost-effective composite methods for large-scale solid-state calculations
,”
Faraday Discuss.
224
,
292
308
(
2020
).
35.
O. I.
Lebedev
,
F.
Millange
,
C.
Serre
,
G.
Van Tendeloo
, and
G.
Férey
, “
First direct imaging of giant pores of the metal–organic framework MIL-101
,”
Chem. Mater.
17
(
26
),
6525
6527
(
2005
).
36.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
37.
L.
Schimka
,
J.
Harl
, and
G.
Kresse
, “
Improved hybrid functional for solids: The HSEsol functional
,”
J. Chem. Phys.
134
,
024116
(
2011
).
38.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
39.
E. R.
Johnson
and
A. D.
Becke
, “
A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
,”
J. Chem. Phys.
124
,
174104
(
2006
).
40.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
41.
B. M.
Axilrod
and
E.
Teller
, “
Interaction of the van der Waals type between three atoms
,”
J. Chem. Phys.
11
,
299
300
(
1943
).
42.
Y.
Muto
, “
Force between nonpolar molecules
,”
J. Phys. Math. Soc. Jpn.
17
,
629
631
(
1943
).
43.
R.
Dovesi
,
A.
Erba
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
L.
Maschio
,
M.
Rérat
,
S.
Casassa
,
J.
Baima
,
S.
Salustro
 et al, “
Quantum-mechanical condensed matter simulations with CRYSTAL
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1360
(
2018
).
44.
A.
Erba
,
J.
Baima
,
I.
Bush
,
R.
Orlando
, and
R.
Dovesi
, “
Large-scale condensed matter DFT simulations: Performance and capabilities of the crystal code
,”
J. Chem. Theory Comput.
13
,
5019
5027
(
2017
).
45.
D.
Vilela Oliveira
,
J.
Laun
,
M. F.
Peintinger
, and
T.
Bredow
, “
BSSE-correction scheme for consistent Gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations
,”
J. Comput. Chem.
40
(
27
),
2364
2376
(
2019
).
46.
N. L.
Rosi
,
J.
Kim
,
M.
Eddaoudi
,
B.
Chen
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units
,”
J. Am. Chem. Soc.
127
,
1504
1518
(
2005
).
47.
H.
Furukawa
,
K. E.
Cordova
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
The chemistry and applications of metal-organic frameworks
,”
Science
341
,
1230444
(
2013
).
48.
M. K.
Bhunia
,
J. T.
Hughes
,
J. C.
Fettinger
, and
A.
Navrotsky
, “
Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1
,”
Langmuir
29
(
25
),
8140
8145
(
2013
).
49.
M.
Dan-Hardi
,
C.
Serre
,
T.
Frot
,
L.
Rozes
,
G.
Maurin
,
C.
Sanchez
, and
G.
Férey
, “
A new photoactive crystalline highly porous titanium(IV) dicarboxylate
,”
J. Am. Chem. Soc.
131
(
31
),
10857
10859
(
2009
).
50.
J. H.
Cavka
,
S.
Jakobsen
,
U.
Olsbye
,
N.
Guillou
,
C.
Lamberti
,
S.
Bordiga
, and
K. P.
Lillerud
, “
A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability
,”
J. Am. Chem. Soc.
130
(
42
),
13850
13851
(
2008
).
51.
N. L.
Rosi
,
J.
Eckert
,
M.
Eddaoudi
,
D. T.
Vodak
,
J.
Kim
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
Hydrogen storage in microporous metal-organic frameworks
,”
Science
300
(
5622
),
1127
1129
(
2003
).
52.
K.
Barthelet
,
J.
Marrot
,
D.
Riou
, and
G.
Férey
, “
A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics
,”
Angew. Chem.
114
(
2
),
291
294
(
2002
).
53.
J. K.
Bristow
,
J. M.
Skelton
,
K. L.
Svane
,
A.
Walsh
, and
J. D.
Gale
, “
A general forcefield for accurate phonon properties of metal–organic frameworks
,”
Phys. Chem. Chem. Phys.
18
(
42
),
29316
29329
(
2016
).
54.
D.
Dokur
and
S.
Keskin
, “
Effects of force field selection on the computational ranking of MOFs for CO2 separations
,”
Ind. Eng. Chem. Res.
57
(
6
),
2298
2309
(
2018
).
55.
D. E.
Coupry
,
M. A.
Addicoat
, and
T.
Heine
, “
Extension of the universal force field for metal–organic frameworks
,”
J. Chem. Theory Comput.
12
(
10
),
5215
5225
(
2016
).
56.
M.
Tafipolsky
,
S.
Amirjalayer
, and
R.
Schmid
, “
Atomistic theoretical models for nanoporous hybrid materials
,”
Microporous Mesoporous Mater.
129
,
304
318
(
2010
).
57.
L.
Vanduyfhuys
,
S.
Vandenbrande
,
J.
Wieme
,
M.
Waroquier
,
T.
Verstraelen
, and
V.
Van Speybroeck
, “
Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal–organic frameworks
,”
J. Comput. Chem.
39
(
16
),
999
1011
(
2018
).
58.
S.
Chavan
,
J. G.
Vitillo
,
M. J.
Uddin
,
F.
Bonino
,
C.
Lamberti
,
E.
Groppo
,
K.-P.
Lillerud
, and
S.
Bordiga
, “
Functionalization of UiO-66 metal–organic framework and highly cross-linked polystyrene with Cr(CO)3: In situ formation, stability, and photoreactivity
,”
Chem. Mater.
22
(
16
),
4602
4611
(
2010
).
59.
L.
Maschio
,
B.
Kirtman
,
R.
Orlando
, and
M.
Rèrat
, “
Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method
,”
J. Chem. Phys.
137
(
20
),
204113
(
2012
).
60.
L.
Maschio
,
B.
Kirtman
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory
,”
J. Chem. Phys.
139
(
16
),
164101
(
2013
).
61.
A. P.
Scott
and
L.
Radom
, “
Harmonic vibrational frequencies: An evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors
,”
J. Phys. Chem.
100
(
41
),
16502
16513
(
1996
).
62.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
, “
An evaluation of harmonic vibrational frequency scale factors
,”
J. Phys. Chem. A
111
(
45
),
11683
11700
(
2007
).
63.
B. E.
Souza
,
L.
Donà
,
K.
Titov
,
P.
Bruzzese
,
Z.
Zeng
,
Y.
Zhang
,
A. S.
Babal
,
A. F.
Möslein
,
M. D.
Frogley
,
M.
Wolna
 et al, “
Elucidating the drug release from metal–organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling
,”
ACS Appl. Mater. Interfaces
12
(
4
),
5147
5156
(
2020
).
64.
T.
Xiong
,
Y.
Zhang
,
L.
Donà
,
M.
Gutiérrez
,
A. F.
Möslein
,
A. S.
Babal
,
N.
Amin
,
B.
Civalleri
, and
J.-C.
Tan
, “
Tunable fluorescein-encapsulated zeolitic imidazolate framework-8 nanoparticles for solid-state lighting
,”
ACS Appl. Nano Mater.
4
,
10321
(
2021
).
65.
M.
Usman
,
S.
Mendiratta
, and
K.-L.
Lu
, “
Metal–organic frameworks: New interlayer dielectric materials
,”
ChemElectroChem
2
(
6
),
786
788
(
2015
).
66.
S.
Mendiratta
,
C.-H.
Lee
,
M.
Usman
, and
K.-L.
Lu
, “
Metal–organic frameworks for electronics: Emerging second order nonlinear optical and dielectric materials
,”
Sci. Technol. Adv. Mater.
16
(
5
),
054204
(
2015
).
67.
E. A.
Dolgopolova
and
N. B.
Shustova
, “
Metal–organic framework photophysics: Optoelectronic devices, photoswitches, sensors, and photocatalysts
,”
MRS Bull.
41
(
11
),
890
896
(
2016
).
68.
I.
Stassen
,
N.
Burtch
,
A.
Talin
,
P.
Falcaro
,
M.
Allendorf
, and
R.
Ameloot
, “
An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
,”
Chem. Soc. Rev.
46
(
11
),
3185
3241
(
2017
).
69.
K. T.
Butler
,
C. H.
Hendon
, and
A.
Walsh
, “
Electronic chemical potentials of porous metal–organic frameworks
,”
J. Am. Chem. Soc.
136
(
7
),
2703
2706
(
2014
).
70.
J.
Gascon
,
M. D.
Hernández-Alonso
,
A. R.
Almeida
,
G. P. M.
van Klink
,
F.
Kapteijn
, and
G.
Mul
, “
Isoreticular MOFs as efficient photocatalysts with tunable band gap: An operando FTIR study of the photoinduced oxidation of propylene
,”
ChemSusChem
1
(
12
),
981
983
(
2008
).
71.
C. H.
Hendon
,
D.
Tiana
,
M.
Fontecave
,
C.
Sanchez
,
L.
D’arras
,
C.
Sassoye
,
L.
Rozes
,
C.
Mellot-Draznieks
, and
A.
Walsh
, “
Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization
,”
J. Am. Chem. Soc.
135
(
30
),
10942
10945
(
2013
).
72.
E.
Flage-Larsen
,
A.
Røyset
,
J. H.
Cavka
, and
K.
Thorshaug
, “
Band gap modulations in UiO metal–organic frameworks
,”
J. Phys. Chem. C
117
(
40
),
20610
20616
(
2013
).
73.
S.
Chavan
,
J. G.
Vitillo
,
D.
Gianolio
,
O.
Zavorotynska
,
B.
Civalleri
,
S.
Jakobsen
,
M. H.
Nilsen
,
L.
Valenzano
,
C.
Lamberti
,
K. P.
Lillerud
 et al, “
H2 storage in isostructural UiO-67 and UiO-66 MOFs
,”
Phys. Chem. Chem. Phys.
14
(
5
),
1614
1626
(
2012
).
74.
F.-X.
Coudert
, “
Responsive metal–organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends
,”
Chem. Mater.
27
(
6
),
1905
1916
(
2015
).
75.
A. E. J.
Hoffman
,
J.
Wieme
,
S. M. J.
Rogge
,
L.
Vanduyfhuys
, and
V.
Van Speybroeck
, “
The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al)
,”
Z. Kristallogr. - Cryst. Mater.
234
(
7–8
),
529
545
(
2019
).
76.
C.
Volkringer
,
M.
Meddouri
,
T.
Loiseau
,
N.
Guillou
,
J.
Marrot
,
G.
Férey
,
M.
Haouas
,
F.
Taulelle
,
N.
Audebrand
, and
M.
Latroche
, “
The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: Synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption
,”
Inorg. Chem.
47
(
24
),
11892
11901
(
2008
).
77.
F.
Salles
,
A.
Ghoufi
,
G.
Maurin
,
R. G.
Bell
,
C.
Mellot-Draznieks
, and
G.
Férey
, “
Molecular dynamics simulations of breathing MOFs: Structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption
,”
Angew. Chem., Int. Ed.
47
(
44
),
8487
8491
(
2008
).
78.
N. A.
Ramsahye
,
G.
Maurin
,
S.
Bourrelly
,
P. L.
Llewellyn
,
C.
Serre
,
T.
Loiseau
,
T.
Devic
, and
G.
Férey
, “
Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47 (V) by density functional theory
,”
J. Phys. Chem. C
112
(
2
),
514
520
(
2008
).
79.
D. S.
Coombes
,
F.
Corà
,
C.
Mellot-Draznieks
, and
R. G.
Bell
, “
Sorption-induced breathing in the flexible metal organic framework CrMIL-53: Force-field simulations and electronic structure analysis
,”
J. Phys. Chem. C
113
(
2
),
544
552
(
2009
).
80.
F.-X.
Coudert
,
A. U.
Ortiz
,
V.
Haigis
,
D.
Bousquet
,
A. H.
Fuchs
,
A.
Ballandras
,
G.
Weber
,
I.
Bezverkhyy
,
N.
Geoffroy
,
J.-P.
Bellat
 et al, “
Water adsorption in flexible gallium-based MIL-53 metal–organic framework
,”
J. Phys. Chem. C
118
(
10
),
5397
5405
(
2014
).
81.
K.
Titov
,
Z.
Zeng
,
M. R.
Ryder
,
A. K.
Chaudhari
,
B.
Civalleri
,
C. S.
Kelley
,
M. D.
Frogley
,
G.
Cinque
, and
J. C.
Tan
, “
Probing dielectric properties of metal–organic frameworks: MIL-53(Al) as a model system for theoretical predictions and experimental measurements via synchrotron far- and mid-infrared spectroscopy
,”
J. Phys. Chem. Lett.
8
(
20
),
5035
5040
(
2017
).
82.
A. M.
Walker
,
B.
Civalleri
,
B.
Slater
,
C.
Mellot-Draznieks
,
F.
Corà
,
C. M.
Zicovich-Wilson
,
G.
Román-Pérez
,
J. M.
Soler
, and
J. D.
Gale
, “
Flexibility in a metal–organic framework material controlled by weak dispersion forces: The bistability of MIL-53(Al)
,”
Angew. Chem., Int. Ed.
122
(
41
),
7663
7665
(
2010
).
83.
J.
Wieme
,
K.
Lejaeghere
,
G.
Kresse
, and
V.
Van Speybroeck
, “
Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks
,”
Nat. Commun.
9
(
1
),
4899
(
2018
).
84.
L.
Valenzano
,
B.
Civalleri
,
K.
Sillar
, and
J.
Sauer
, “
Heats of adsorption of CO and CO2 in metal–organic frameworks: Quantum mechanical study of CPO-27-M (M = Mg, Ni, Zn)
,”
J. Phys. Chem. C
115
(
44
),
21777
21784
(
2011
).
85.
M.
D’Amore
,
B.
Civalleri
,
I. J.
Bush
,
E.
Albanese
, and
M.
Ferrabone
, “
Elucidating the interaction of CO2 in the giant metal–organic framework MIL-100 through large-scale periodic ab initio modeling
,”
J. Phys. Chem. C
123
(
47
),
28677
28687
(
2019
).
86.
C.
Volkringer
,
D.
Popov
,
T.
Loiseau
,
G.
Férey
,
M.
Burghammer
,
C.
Riekel
,
M.
Haouas
, and
F.
Taulelle
, “
Synthesis, single-crystal x-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100
,”
Chem. Mater.
21
(
24
),
5695
5697
(
2009
).
87.
Y.-T.
Li
,
K.-H.
Cui
,
J.
Li
,
J.-Q.
Zhu
,
X.
Wang
, and
Y.-Q.
Tian
, “
The giant pore metal-organic frameworks of scandium carboxylate with MIL-100 and MIL-101 structures
,”
Chin. J. Inorg. Chem.
27
(
5
),
951
956
(
2011
).
88.
G.
Férey
,
C.
Serre
,
C.
Mellot-Draznieks
,
F.
Millange
,
S.
Surblé
,
J.
Dutour
, and
I.
Margiolaki
, “
A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction
,”
Angew. Chem.
116
(
46
),
6456
6461
(
2004
).
89.
P.
Horcajada
,
S.
Surblé
,
C.
Serre
,
D.-Y.
Hong
,
Y.-K.
Seo
,
J.-S.
Chang
,
J.-M.
Grenèche
,
I.
Margiolaki
, and
G.
Férey
, “
Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores
,”
Chem. Commun.
2007
(
27
),
2820
2822
.
90.

For instance, by starting from the B3LYP-D*/TZVP optimized geometry, the full relaxation of MIL-100(Cr) takes about 30 steps with a total wall-clock time of 3 days.

91.
G.
Férey
,
C.
Mellot-Draznieks
,
C.
Serre
,
F.
Millange
,
J.
Dutour
,
S.
Surblé
, and
I.
Margiolaki
, “
A chromium terephthalate-based solid with unusually large pore volumes and surface area
,”
Science
309
(
5743
),
2040
2042
(
2005
).
92.
M. D.
Allendorf
,
V.
Stavila
,
M.
Witman
,
C. K.
Brozek
, and
C. H.
Hendon
, “
What lies beneath a metal–organic framework crystal structure? New design principles from unexpected behaviors
,”
J. Am. Chem. Soc.
143
,
6705
6723
(
2021
).

Supplementary Material

You do not currently have access to this content.