Graphitic carbon nitride (GCN) has attracted significant attention due to its excellent performance in photocatalytic applications. Non-metal doping of GCN has been widely used to improve the efficiency of the material as a photocatalyst. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we study the charge carrier dynamics in oxygen and boron doped GCN systems. The reported simulations provide a detailed time-domain mechanistic description of the charge separation and recombination processes that are of fundamental importance while evaluating the photovoltaic and photocatalytic performance of the material. The appearance of smaller energy gaps due to the presence of dopant states improves the visible light absorption range of the doped systems. At the same time, the nonradiative lifetimes are shortened in the doped systems as compared to the pristine GCN. In the case of boron doped at a carbon (B–C–GCN), the charge recombination time is very long as compared to the other two doped systems owing to the smaller electron–phonon coupling strength between the valence band maximum and the trap state. The results suggest B–C–GCN as the most suitable candidate among three doped systems studied in this work for applications in photocatalysis. This work sheds light into the influence of dopants on quantum dynamics processes that govern GCN performance and, thus, guides toward building high-performance devices in photocatalysis.

1.
X.
Wang
,
K.
Maeda
,
A.
Thomas
,
K.
Takanabe
,
G.
Xin
,
J. M.
Carlsson
,
K.
Domen
, and
M.
Antonietti
,
Nat. Mater.
8
,
76
(
2009
).
2.
S.
Yin
,
J.
Han
,
T.
Zhou
, and
R.
Xu
,
Catal. Sci. Technol.
5
,
5048
(
2015
).
3.
Z.
Zhao
,
Y.
Sun
, and
F.
Dong
,
Nanoscale
7
,
15
(
2015
).
4.
X.
Liu
,
R.
Ma
,
L.
Zhuang
,
B.
Hu
,
J.
Chen
,
X.
Liu
, and
X.
Wang
,
Crit. Rev. Environ. Sci. Technol.
51
,
751
(
2021
).
5.
J.
Zhu
,
P.
Xiao
,
H.
Li
, and
S. A. C.
Carabineiro
,
ACS Appl. Mater. Interfaces
6
,
16449
(
2014
).
6.
N.
Rono
,
J. K.
Kibet
,
B. S.
Martincigh
, and
V. O.
Nyamori
,
Crit. Rev. Solid State Mater. Sci.
46
,
189
(
2020
).
7.
B.
Mortazavi
,
G.
Cuniberti
, and
T.
Rabczuk
,
Comput. Mater. Sci.
99
,
285
(
2015
).
8.
W.-J.
Ong
,
L.-L.
Tan
,
Y. H.
Ng
,
S.-T.
Yong
, and
S.-P.
Chai
,
Chem. Rev.
116
,
7159
(
2016
).
9.
J.
Liu
,
H.
Wang
, and
M.
Antonietti
,
Chem. Soc. Rev.
45
,
2308
(
2016
).
10.
A.
Wang
,
C.
Wang
,
L.
Fu
,
W.
Wong-Ng
, and
Y.
Lan
,
Nano-Micro Lett.
9
,
47
(
2017
).
11.
B.
Xu
,
M. B.
Ahmed
,
J. L.
Zhou
,
A.
Altaee
,
G.
Xu
, and
M.
Wu
,
Sci. Total Environ.
633
,
546
(
2018
).
12.
J.
Safaei
,
N. A.
Mohamed
,
M. F.
Mohamad Noh
,
M. F.
Soh
,
N. A.
Ludin
,
M. A.
Ibrahim
,
W. N.
Roslam Wan Isahak
, and
M. A.
Mat Teridi
,
J. Mater. Chem. A
6
,
22346
(
2018
).
13.
S.
Cao
,
J.
Low
,
J.
Yu
, and
M.
Jaroniec
,
Adv. Mater.
27
,
2150
(
2015
).
14.
F. K.
Kessler
,
Y.
Zheng
,
D.
Schwarz
,
C.
Merschjann
,
W.
Schnick
,
X.
Wang
, and
M. J.
Bojdys
,
Nat. Rev. Mater.
2
,
17030
(
2017
).
15.
L.
Zhou
,
H.
Zhang
,
H.
Sun
,
S.
Liu
,
M. O.
Tade
,
S.
Wang
, and
W.
Jin
,
Catal. Sci. Technol.
6
,
7002
(
2016
).
16.
Z.
Mo
,
H.
Xu
,
Z.
Chen
,
X.
She
,
Y.
Song
,
J.
Wu
,
P.
Yan
,
L.
Xu
,
Y.
Lei
,
S.
Yuan
, and
H.
Li
,
Appl. Catal., B
225
,
154
(
2018
).
17.
M.
Makaremi
,
S.
Grixti
,
K. T.
Butler
,
G. A.
Ozin
, and
C. V.
Singh
,
ACS Appl. Mater. Interfaces
10
,
11143
(
2018
).
18.
Q.
Tay
,
P.
Kanhere
,
C. F.
Ng
,
S.
Chen
,
S.
Chakraborty
,
A. C. H.
Huan
,
T. C.
Sum
,
R.
Ahuja
, and
Z.
Chen
,
Chem. Mater.
27
,
4930
(
2015
).
19.
Q.
Liu
,
J.
Shen
,
X.
Yu
,
X.
Yang
,
W.
Liu
,
J.
Yang
,
H.
Tang
,
H.
Xu
,
H.
Li
,
Y.
Li
, and
J.
Xu
,
Appl. Catal., B
248
,
84
(
2019
).
20.
L.
Jiang
,
X.
Yuan
,
Y.
Pan
,
J.
Liang
,
G.
Zeng
,
Z.
Wu
, and
H.
Wang
,
Appl. Catal., B
217
,
388
(
2017
).
21.
H.-p.
Zhang
,
A.
Du
,
N. S.
Gandhi
,
Y.
Jiao
,
Y.
Zhang
,
X.
Lin
,
X.
Lu
, and
Y.
Tang
,
Appl. Surf. Sci.
455
,
1116
(
2018
).
22.
C.
Lu
,
R.
Chen
,
X.
Wu
,
M.
Fan
,
Y.
Liu
,
Z.
Le
,
S.
Jiang
, and
S.
Song
,
Appl. Surf. Sci.
360
,
1016
(
2016
).
23.
J.
Li
,
B.
Shen
,
Z.
Hong
,
B.
Lin
,
B.
Gao
, and
Y.
Chen
,
Chem. Commun.
48
,
12017
(
2012
).
24.
P.
Qiu
,
C.
Xu
,
H.
Chen
,
F.
Jiang
,
X.
Wang
,
R.
Lu
, and
X.
Zhang
,
Appl. Catal., B
206
,
319
(
2017
).
25.
F.
Wei
,
Y.
Liu
,
H.
Zhao
,
X.
Ren
,
J.
Liu
,
T.
Hasan
,
L.
Chen
,
Y.
Li
, and
B.-L.
Su
,
Nanoscale
10
,
4515
(
2018
).
26.
D. A.
Tran
,
C. T.
Nguyen Pham
,
T.
Nguyen Ngoc
,
H.
Nguyen Phi
,
Q. T.
Hoai Ta
,
D. H.
Truong
,
V. T.
Nguyen
,
H. H.
Luc
,
L. T.
Nguyen
,
N. N.
Dao
,
S. J.
Kim
, and
V.
Vo
,
J. Phys. Chem. Solids
151
,
109900
(
2021
).
27.
H.
Katsumata
,
F.
Higashi
,
Y.
Kobayashi
,
I.
Tateishi
,
M.
Furukawa
, and
S.
Kaneco
,
Sci. Rep.
9
,
14873
(
2019
).
28.
S.
Thaweesak
,
S.
Wang
,
M.
Lyu
,
M.
Xiao
,
P.
Peerakiatkhajohn
, and
L.
Wang
,
Dalton Trans.
46
,
10714
(
2017
).
29.
H.
Wang
,
B.
Wang
,
Y.
Bian
, and
L.
Dai
,
ACS Appl. Mater. Interfaces
9
,
21730
(
2017
).
30.
P.
Babu
,
S.
Mohanty
,
B.
Naik
, and
K.
Parida
,
ACS Appl. Energy Mater.
1
,
5936
(
2018
).
31.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
32.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
33.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
34.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
36.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
37.
J. P.
Perdew
,
Int. J. Quantum Chem.
28
,
497
(
1985
).
38.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
39.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
40.
Q.
Gao
,
X.
Zhuang
,
S.
Hu
, and
Z.
Hu
,
J. Phys. Chem. C
124
,
4644
(
2020
).
41.
W.
Chu
and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
12
,
3082
(
2021
).
42.
C. F.
Craig
,
W. R.
Duncan
, and
O. V.
Prezhdo
,
Phys. Rev. Lett.
95
,
163001
(
2005
).
43.
S. A.
Fischer
,
B. F.
Habenicht
,
A. B.
Madrid
,
W. R.
Duncan
, and
O. V.
Prezhdo
,
J. Chem. Phys.
134
,
024102
(
2011
).
44.
S.
Agrawal
,
W.
Lin
,
O. V.
Prezhdo
, and
D. J.
Trivedi
,
J. Chem. Phys.
153
,
054701
(
2020
).
45.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
9
,
4959
(
2013
).
46.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
,
J. Chem. Phys.
137
,
22A545
(
2012
).
47.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
10
,
789
(
2014
).
48.
W. H.
Miller
,
J. Chem. Phys.
55
,
3146
(
1971
).
49.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
4
,
3857
(
2013
).
50.
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
5863
(
1997
).
51.
D. J.
Trivedi
and
O. V.
Prezhdo
,
J. Phys. Chem. A
119
,
8846
(
2015
).
52.
S. V.
Kilina
,
A. J.
Neukirch
,
B. F.
Habenicht
,
D. S.
Kilin
, and
O. V.
Prezhdo
,
Phys. Rev. Lett.
110
,
180404
(
2013
).
53.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press on Demand
,
1999
), p.
6
.
54.
E. R.
Bittner
and
P. J.
Rossky
,
J. Chem. Phys.
103
,
8130
(
1995
).
55.
J.
Liu
,
A. J.
Neukirch
, and
O. V.
Prezhdo
,
J. Chem. Phys.
139
,
164303
(
2013
).
56.
B.
Barrow
and
D. J.
Trivedi
,
Computational Photocatalysis: Modeling of Photophysics and Photochemistry at Interfaces
(
American Chemical Society
,
2019
), p.
101
.
57.
S.
Dong
,
D.
Trivedi
,
S.
Chakrabortty
,
T.
Kobayashi
,
Y.
Chan
,
O. V.
Prezhdo
, and
Z.-H.
Loh
,
Nano Lett.
15
,
6875
(
2015
).
58.
D. J.
Trivedi
,
L.
Wang
, and
O. V.
Prezhdo
,
Nano Lett.
15
,
2086
(
2015
).
59.
L.
Wang
,
R.
Long
,
D.
Trivedi
, and
O. V.
Prezhdo
, in
Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials
, edited by
V. A.
Basiuk
and
E. V.
Basiuk
(
Springer International Publishing
,
Cham
,
2015
), p.
353
.
60.
W.
Li
,
Y.
She
,
A. S.
Vasenko
, and
O. V.
Prezhdo
,
Nanoscale
13
,
10239
(
2021
).
61.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).

Supplementary Material

You do not currently have access to this content.