We report the temperature evolution of hydrogen bond (HB) chains and rings in Mn5[(PO4)2(PO3(OH))2](HOH)4 to reveal conduction pathways based on difference Fourier maps with neutron- and synchrotron x-ray diffraction data. Localized proton dynamics for the five distinct hydrogen sites were observed and identified in this study. Their temperature evaluation over ten orders of magnitude in time was followed by means of quasielastic neutron scattering, dielectric spectroscopy, and ab initio molecular dynamics. Two out of the five hydrogen sites are geometrically isolated and are not suitable for long-range proton conduction. Nevertheless, the detected dc conductivity points to long-range charge transport at elevated temperatures, which occurs most likely (1) over H4–H4 sites between semihelical HB chains (interchain-exchanges) and (2) by rotations of O1–H1 and site-exchanging H4–O10–O5 groups along each semihelical HB chain (intrachain-exchanges). The latter dynamics freeze into a proton-glass state at low temperatures. Rotational and site-exchanging motions of HOH and OH ligands seem to be facilitated by collective motions of framework polyhedra, which we detected by inelastic neutron scattering.

1.
Q.
Chen
and
A.
Braun
, “
Protons and the hydrogen economy
,”
MRS Energy Sustainability
4
,
14
(
2017
).
2.
A.
Borgschulte
,
J.
Terreni
,
E.
Billeter
,
L.
Daemen
,
Y.
Cheng
,
A.
Pandey
,
Z.
Łodziana
,
R. J.
Hemley
, and
A. J.
Ramirez-Cuesta
, “
Inelastic neutron scattering evidence for anomalous H–H distances in metal hydrides
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
4021
4026
(
2020
).
3.
S.
Tao
,
L.
Zhai
,
A. D.
Dinga Wonanke
,
M. A.
Addicoat
,
Q.
Jiang
, and
D.
Jiang
, “
Confining H3PO4 network in covalent organic frameworks enables proton super flow
,”
Nat. Commun.
11
,
1981
(
2020
).
4.
S. M.
Haile
,
D. A.
Boysen
,
C. R. I.
Chisholm
, and
R. B.
Merle
, “
Solid acids as fuel cell electrolytes
,”
Nature
410
,
910
913
(
2001
).
5.
Proton Conductors: Solids, Membranes, and Gels-Materials and Devices
, edited by
P.
Colomban
(
Cambridge University Press
,
New York
,
1992
), pp.
175
234
.
6.
P.
Colomban
, “
Proton conductors and their applications: A tentative historical overview of the early researches
,”
Solid State Ionics
334
,
125
144
(
2019
).
7.
A.-C.
Dupuis
, “
Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques
,”
Prog. Mater. Sci.
56
,
289
327
(
2011
).
8.
A. I.
Baranov
, “
Crystals with disordered hydrogen-bond networks and superprotonic conductivity. Review
,”
Crystallogr. Rep.
48
,
1012
1037
(
2003
).
9.
Y.
Matsuda
,
M.
Yonemura
,
H.
Koga
,
C.
Pitteloud
,
M.
Nagao
,
M.
Hirayama
, and
R.
Kanno
, “
Synthesis, crystal structure, and ionic conductivity of tunnel structure phosphates, RbMg1−xH2x(PO3)3·y(H2O)
,”
J. Mater. Chem. A
1
,
15544
15551
(
2013
).
10.
A. I.
Baranov
,
L. A.
Shuvalov
, and
N. M.
Shchagina
, “
Superion conductivity and phase transitions in CsHSO4 and CsHSeO4 crystals
,”
JETP Lett.
36
,
459
462
(
1982
).
11.
A.
Ishikawa
,
H.
Maekawa
,
T.
Yamamura
,
Y.
Kawakita
,
K.
Shibata
, and
M.
Kawai
, “
Proton dynamics of CsH2PO4 studied by quasi-elastic neutron scattering and PFG-NMR
,”
Solid State Ionics
179
,
2345
2349
(
2008
).
12.
R.
Blinc
,
V.
Dimic
,
J.
Petkovšek
, and
E.
Pirkmajer
, “
Study of proton dynamics in paraelectric KH2PO4 by quasi-elastic cold neutron scattering
,”
Phys. Lett. A
26
,
8
9
(
1967
).
13.
S.
Ikeda
,
Y.
Noda
,
H.
Sugimoto
, and
Y.
Yamada
, “
Dynamical properties of protons in KH2PO4 studied by incoherent neutron scattering
,”
J. Phys. Soc. Jpn.
63
,
1001
1008
(
1994
).
14.
A.
Hartl
,
S.-H.
Park
,
M.
Hoelzel
,
N.
Paul
, and
R.
Gilles
, “
Proton conductivity in a hureaulite-type compound, Mn5[(PO4)2(PO3(OH))2](HOH)4
,”
J. Solid State Chem.
277
,
290
302
(
2019
).
15.
S.-H.
Park
,
A.
Hartl
,
D.
Sheptyakov
,
M.
Hoelzel
, and
A.
Arauzo
, “
Structural investigation into magnetic spin orders of a manganese phosphatic oxyhydroxide, Mn5[(PO4)2(PO3(OH))2](HOH)4
,”
Symmetry
13
,
1688
(
2021
).
16.
M.
Baum
,
F.
Rieutord
,
F.
Juranyi
,
C.
Rey
, and
D.
Rébiscoul
, “
Dynamical and structural properties of water in silica nanoconfinement: Impact of pore size, ion nature, and electrolyte concentration
,”
Langmuir
35
,
10780
10794
(
2019
).
17.
X.
Liu
,
Y.
Li
,
J.
Xue
,
W.
Zhu
,
J.
Zhang
,
Y.
Yin
,
Y.
Qin
,
K.
Jiao
,
Q.
Du
,
B.
Cheng
,
X.
Zhuang
,
J.
Li
, and
M. D.
Guiver
, “
Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane
,”
Nat. Commun.
10
,
842
(
2019
).
18.
G.
Xing
,
T.
Yan
,
S.
Das
,
T.
Ben
, and
S.
Qiu
, “
Synthesis of crystalline porous organic salts with high proton conductivity
,”
Angew. Chem., Int. Ed.
57
,
5345
5349
(
2018
).
19.
H.
Matsui
and
M.
Tadokoro
, “
Eigen-like hydrated protons traveling with a local distortion through the water nanotube in new molecular porous crystals {[MIII (H2bim)3] (TMA)·20H2O}n (M = Co, Rh, Ru)
,”
J. Chem. Phys.
137
,
144503
(
2012
).
20.
N.
Zhang
,
Y.
Song
,
J.
Huo
,
Y.
Li
,
Z.
Liu
,
J.
Bao
,
S.
Chen
,
X.
Ruan
, and
G.
He
, “
Formation mechanism of the spiral-like structure of a hydrogen bond network confined in a fluorinated nanochannel: A molecular dynamics simulation
,”
J. Phys. Chem. C
121
,
13840
13847
(
2017
).
21.
M.
Sadakiyo
,
T.
Yamada
, and
H.
Kitagawa
, “
Rational designs for highly proton-conductive metal-organic frameworks
,”
J. Am. Chem. Soc.
131
,
9906
9907
(
2009
).
22.
M. A.
Belyanchikov
,
M.
Savinov
,
Z. V.
Bedran
,
P.
Bednyakov
,
P.
Proschek
,
J.
Prokleska
,
V. A.
Abalmasov
,
J.
Petzelt
,
E. S.
Zhukova
,
V. G.
Thomas
,
A.
Dudka
,
A.
Zhugayevych
,
A. S.
Prokhorov
,
V. B.
Anzin
,
R. K.
Kremer
,
J. K. H.
Fischer
,
P.
Lunkenheimer
,
A.
Loidl
,
E.
Uykur
,
M.
Dressel
, and
B.
Gorshunov
, “
Dielectric ordering of water molecules arranged in a dipolar lattice
,”
Nat. Commun.
11
,
3927
(
2020
).
23.
M.
Busch
,
T.
Hofmann
,
B.
Frick
,
J. P.
Embs
,
B.
Dyatkin
, and
P.
Huber
, “
Ionic liquid dynamics in nanoporous carbon: A pore-size- and temperature-dependent neutron spectroscopy study on supercapacitor materials
,”
Phys. Rev. Mater.
4
,
055401
(
2020
).
24.
A. B.
Yaroslavtsev
, “
Proton conductivity of inorganic hydrates
,”
Russ. Chem. Rev.
63
,
429
435
(
1994
).
25.
Rigaku Oxford Diffraction UK Ltd, CrysAlisPro,
2015
.
26.
V.
Petrícek
,
M.
Dusek
, and
L.
Palatinus
, “
Crystallographic computing system JANA2006: General features
,”
Z. Kristallogr. - Cryst. Mater.
229
,
345
352
(
2014
).
27.
R. T.
Azuah
,
L. R.
Kneller
,
Y.
Qiu
,
P. L. W.
Tregenna-Piggott
,
C. M.
Brown
,
J. R. D.
Copley
, and
R. M.
Dimeo
, “
DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data
,”
J. Res. Natl. Inst. Stand. Technol.
114
,
341
358
(
2009
).
28.
R.
Böhmer
,
M.
Maglione
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Radio-frequency dielectric measurements at temperatures from 10 to 450 K
,”
J. Appl. Phys.
65
,
901
904
(
1989
).
29.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
30.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package–Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
31.
J.
Vandevondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
32.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1996
).
33.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
3662
(
1998
).
34.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
35.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
38.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
39.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
40.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS—A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
2023
(
2011
).
41.
M.
Brehm
,
M.
Thomas
,
S.
Gehrke
, and
B.
Kirchner
, “
TRAVIS—A free analyzer for trajectories from molecular simulation
,”
J. Chem. Phys.
152
,
164105
(
2020
).
42.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
43.
H.
Euchner
,
M.
Mihalkovič
,
F.
Gähler
,
M. R.
Johnson
,
H.
Schober
,
S.
Rols
,
E.
Suard
,
A.
Bosak
,
S.
Ohhashi
,
A. P.
Tsai
,
S.
Lidin
,
C. P.
Gomez
,
J.
Custers
,
S.
Paschen
, and
M.
De Boissieu
, “
Anomalous vibrational dynamics in the Mg2Zn11 phase
,”
Phys. Rev. B
83
,
144202
(
2011
).
44.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vöhringer
, and
B.
Kirchner
, “
Computing vibrational spectra from ab initio molecular dynamics
,”
Phys. Chem. Chem. Phys.
15
,
6608
6622
(
2013
).
45.
T.
Famprikis
,
P.
Canepa
,
J. A.
Dawson
,
M. S.
Islam
, and
C.
Masquelier
, “
Fundamentals of inorganic solid-state electrolytes for batteries
,”
Nat. Mater.
18
,
1278
1291
(
2019
).
46.
B.
Frick
,
J.
Combet
, and
L.
Van Eijck
, “
New possibilities with inelastic fixed window scans and linear motor Doppler drives on high resolution neutron backscattering spectrometers
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
669
,
7
13
(
2012
).
47.
M. T. F.
Telling
,
L.
Clifton
,
J.
Combet
,
B.
Frick
,
S.
Howells
, and
V. G.
Sakai
, “
Lyophilised protein dynamics: More than just methyls?
,”
Soft Matter
8
,
9529
9532
(
2012
).
48.
J. P.
Embs
,
F.
Juranyi
, and
R.
Hempelmann
, “
Introduction to quasielastic neutron scattering
,”
Z. Phys. Chem.
224
,
5
32
(
2010
).
49.
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer
,
Berlin
,
2002
).
50.
P.
Lunkenheimer
and
A.
Loidl
, “
Dielectric spectroscopy on organic charge-transfer salts
,”
J. Phys.: Condens. Matter
27
,
373001
(
2015
).
51.
P.
Lunkenheimer
,
S.
Krohns
,
S.
Riegg
,
S. G.
Ebbinghaus
,
A.
Reller
, and
A.
Loidl
, “
Colossal dielectric constants in transition-metal oxides
,”
Eur. Phys. J.: Spec. Top.
180
,
61
89
(
2010
).
52.
S.
Emmert
,
M.
Wolf
,
R.
Gulich
,
S.
Krohns
,
S.
Kastner
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Electrode polarization effects in broadband dielectric spectroscopy
,”
Eur. Phys. J. B
83
,
157
165
(
2011
).
53.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
, “
Supercooled liquids and glasses
,”
J. Phys. Chem.
100
,
13200
13212
(
1996
).
54.
P.
Lunkenheimer
and
A.
Loidl
, “
Glassy dynamics: From millihertz to terahertz
,” in
The Scaling of Relaxation Processes
, edited by
F.
Kremer
and
A.
Loidl
(
Springer International Publishing
,
Cham
,
2018
), pp.
23
59
.
55.
C. A.
Angell
, “
Strong and fragile liquids
,” in
Relaxations in Complex Systems
, edited by
K. L.
Ngai
and
G. B.
Wright
(
Springer
,
New York
,
1985
), pp.
3
11
.
56.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
, “
Nonexponential relaxations in strong and fragile glass formers
,”
J. Chem. Phys.
99
,
4201
4209
(
1993
).
57.
W. M.
Du
,
G.
Li
,
H. Z.
Cummins
,
M.
Fuchs
,
J.
Toulouse
, and
L. A.
Knauss
, “
Light-scattering study of the liquid-glass transition in propylene carbonate
,”
Phys. Rev. E
49
,
2192
2205
(
1994
).
58.
A.
Faraone
,
D. V.
Wagle
,
G. A.
Baker
,
E. C.
Novak
,
M.
Ohl
,
D.
Reuter
,
P.
Lunkenheimer
,
A.
Loidl
, and
E.
Mamontov
, “
Glycerol hydrogen-bonding network dominates structure and collective dynamics in a deep eutectic solvent
,”
J. Phys. Chem. B
122
,
1261
1267
(
2018
).
59.
S.
Kämmerer
,
W.
Kob
, and
R.
Schilling
, “
Test of mode coupling theory for a supercooled liquid of diatomic molecules. II. q-dependent orientational correlators
,”
Phys. Rev. E
58
,
2141
2150
(
1998
).
60.
W.
Götze
and
T.
Voigtmann
, “
Universal and nonuniversal features of glassy relaxation in propylene carbonate
,”
Phys. Rev. E
61
,
4133
4147
(
2000
).
61.
M.
Winkler
,
P.
Lunkenheimer
,
A.
Loidl
,
S.-H.
Park
,
B.
Röska
, and
M.
Hoelzel
, “
Charge transport by global protonic conductivity and relaxational dynamics over hydrogen bonds in Fe2+Fe3+3.2(Mn2+, Zn)0.8(PO4)3(OH)4.2(HOH)0.8
,”
Solid State Ionics
347
,
115240
(
2020
).
62.
S. L.
Hutton
,
I.
Fehst
,
R.
Böhmer
,
M.
Braune
,
B.
Mertz
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Proton glass behavior and hopping conductivity in solid solutions of antiferroelectric betaine phosphate and ferroelectric betaine phosphite
,”
Phys. Rev. Lett.
66
,
1990
1993
(
1991
).
63.
Y.
Feng
,
C.
Ancona-Torres
,
T. F.
Rosenbaum
,
G. F.
Reiter
,
D. L.
Price
, and
E.
Courtens
, “
Quantum and classical relaxation in the proton glass
,”
Phys. Rev. Lett.
97
,
145501
(
2006
).
64.
N. H.
Bashian
,
S.
Zhou
,
M.
Zuba
,
A. M.
Ganose
,
J. W.
Stiles
,
A.
Ee
,
D. S.
Ashby
,
D. O.
Scanlon
,
L. F. J.
Piper
,
B.
Dunn
, and
B. C.
Melot
, “
Correlated polyhedral rotations in the absence of polarons during electrochemical insertion of lithium in ReO3
,”
ACS Energy Lett.
3
,
2513
2519
(
2018
).
65.
A.
Hartl
, “
Proton motions in hydrogen bonds of phosphatic oxyhydroxides: The case of Mn2+[(PO4)2(PO3OH)2](HOH)4
,” MS thesis,
Ludwig Maximilian University
,
Munich
,
2020
.

Supplementary Material

You do not currently have access to this content.