During fast diffusion-influenced polymerization, nonequilibrium behavior of the polymer chains and the surrounding reactive monomers has been reported recently. Based on the laws of thermodynamics, the emerging nonequilibrium structures should be characterizable by some “extra free energy” (excess over the equilibrium Helmholtz free energy). Here, we study the nonequilibrium thermodynamics of chain-growth polymerization of ideal chains in a dispersion of free reactive monomers, using off-lattice, reactive Brownian dynamics computer simulations in conjunction with approximative statistical mechanics and relative entropy (Gibbs–Shannon and Kullback–Leibler) concepts. In the case of fast growing polymers, we indeed report increased nonequilibrium free energies ΔFneq of several kBT compared to equilibrium and near-equilibrium, slowly growing chains. Interestingly, ΔFneq is a non-monotonic function of the degree of polymerization and thus also of time. Our decomposition of the thermodynamic contributions shows that the initial dominant extra free energy is stored in the nonequilibrium inhomogeneous density profiles of the free monomer gas (showing density depletion and wakes) in the vicinity of the active center at the propagating polymer end. At later stages of the polymerization process, we report significant extra contributions stored in the nonequilibrium polymer conformations. Finally, our study implies a nontrivial relaxation kinetics and “restoring” of the extra free energy during the equilibration process after polymerization.

1.
M.
Bley
,
U.
Baul
, and
J.
Dzubiella
, “
Controlling solvent quality by time: Self-avoiding sprints in nonequilibrium polymerization
,”
Phys. Rev. E
104
,
034501
(
2021
).
2.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
3.
J.
Liphardt
, “
Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality
,”
Science
296
,
1832
1835
(
2002
).
4.
T.
Speck
and
U.
Seifert
, “
Dissipated work in driven harmonic diffusive systems: General solution and application to stretching Rouse polymers
,”
Eur. Phys. J. B
43
,
521
527
(
2005
).
5.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca; London
,
1979
).
6.
P. E.
Rouse
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
7.
G.
Strobl
,
The Physics of Polymers
, 3rd rev. ed. (
Springer
,
Berlin, Heidelberg
,
2007
).
8.
A.
Alexander-Katz
,
H.
Wada
, and
R. R.
Netz
, “
Internal friction and nonequilibrium unfolding of polymeric globules
,”
Phys. Rev. Lett.
103
,
028102
(
2009
).
9.
T. R.
Einert
,
C. E.
Sing
,
A.
Alexander-Katz
, and
R. R.
Netz
, “
Conformational dynamics and internal friction in homopolymer globules: Equilibrium vs. non-equilibrium simulations
,”
Eur. Phys. J. E
34
,
130
(
2011
).
10.
F.
Latinwo
,
K.-W.
Hsiao
, and
C. M.
Schroeder
, “
Nonequilibrium thermodynamics of dilute polymer solutions in flow
,”
J. Chem. Phys.
141
,
174903
(
2014
).
11.
G.
Reiter
, “
The memorizing capacity of polymers
,”
J. Chem. Phys.
152
,
150901
(
2020
).
12.
F.
Ramezani
,
J.
Baschnagel
, and
G.
Reiter
, “
Translating molecular relaxations in non-equilibrated polymer melts into lifting macroscopic loads
,”
Phys. Rev. Mater.
4
,
082601
(
2020
).
13.
S.
Chandran
,
J.
Baschnagel
,
D.
Cangialosi
,
K.
Fukao
,
E.
Glynos
,
L. M. C.
Janssen
,
M.
Müller
,
M.
Muthukumar
,
U.
Steiner
,
J.
Xu
,
S.
Napolitano
, and
G.
Reiter
, “
Processing pathways decide polymer properties at the molecular level
,”
Macromolecules
52
,
7146
7156
(
2019
).
14.
M. A. C.
Stuart
,
W. T. S.
Huck
,
J.
Genzer
,
M.
Müller
,
C.
Ober
,
M.
Stamm
,
G. B.
Sukhorukov
,
I.
Szleifer
,
V. V.
Tsukruk
,
M.
Urban
,
F.
Winnik
,
S.
Zauscher
,
I.
Luzinov
, and
S.
Minko
, “
Emerging applications of stimuli-responsive polymer materials
,”
Nat. Mater.
9
,
101
113
(
2010
).
15.
K. R.
Thomas
,
A.
Chenneviere
,
G.
Reiter
, and
U.
Steiner
, “
Nonequilibrium behavior of thin polymer films
,”
Phys. Rev. E
83
,
021804
(
2011
).
16.
X.
Liu
,
H.
Yuk
,
S.
Lin
,
G. A.
Parada
,
T. C.
Tang
,
E.
Tham
,
C.
de la Fuente‐Nunez
,
T. K.
Lu
, and
X.
Zhao
, “
3D printing of living responsive materials and devices
,”
Adv. Mater.
30
,
1704821
(
2018
).
17.
A.
Walther
, “
Viewpoint: From responsive to adaptive and interactive materials and materials systems: A roadmap
,”
Adv. Mater.
32
,
1905111
(
2020
).
18.
P. G.
de Gennes
, “
Kinetics of diffusion-controlled processes in dense polymer systems. I. Nonentangled regimes
,”
J. Chem. Phys.
76
,
3316
3321
(
1982
).
19.
T.
Guérin
,
O.
Bénichou
, and
R.
Voituriez
, “
Non-Markovian polymer reaction kinetics
,”
Nat. Chem.
4
,
568
573
(
2012
).
20.
H. H.
Katkar
and
M.
Muthukumar
, “
Role of non-equilibrium conformations on driven polymer translocation
,”
J. Chem. Phys.
148
,
024903
(
2018
).
21.
J.
Smrek
,
I.
Chubak
,
C. N.
Likos
, and
K.
Kremer
, “
Emergence of active topological glass through directed chain dynamics and nonequilibrium phase segregation
,”
Phys. Rev. Res.
11
,
26
(
2020
).
22.
S. R.
De Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover Publications
,
New York
,
1962
).
23.
I.
Prigogine
, “
Time, structure, and fluctuations
,”
Science
201
,
777
785
(
1978
).
24.
U.
Seifert
, “
Entropy production along a stochastic trajectory and an integral fluctuation theorem
,”
Phys. Rev. Lett.
95
,
040602
(
2005
).
25.
U.
Seifert
, “
Stochastic thermodynamics, fluctuation theorems and molecular machines
,”
Rep. Prog. Phys.
75
,
126001
(
2012
).
26.
D. J.
Evans
,
E. G. D.
Cohen
, and
G. P.
Morriss
, “
Probability of second law violations in shearing steady states
,”
Phys. Rev. Lett.
71
,
2401
2404
(
1993
).
27.
C.
Jarzynski
, “
Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach
,”
Phys. Rev. E
56
,
5018
5035
(
1997
).
28.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
29.
G. E.
Crooks
, “
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
,”
Phys. Rev. E
60
,
2721
2726
(
1999
).
30.
J. W.
Gibbs
,
Elementary Principles in Statistical Mechanics
(
Charles Scribner’s Sons
,
New York
,
1902
).
31.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
623
656
(
1948
).
32.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
,
79
86
(
1951
).
33.
B.
Altaner
, “
Nonequilibrium thermodynamics and information theory: Basic concepts and relaxing dynamics
,”
J. Phys. A: Math. Theor.
50
,
454001
(
2017
).
34.
F. T.
Wall
, “
Statistical thermodynamics of rubber
,”
J. Chem. Phys.
10
,
132
134
(
1942
).
35.
J.
Dayantis
, “
On the entropy of single polymer chains
,”
Eur. Polym. J.
31
,
203
204
(
1995
).
36.
H.
Qian
, “
Relative entropy: Free energy associated with equilibrium fluctuations and nonequilibrium deviations
,”
Phys. Rev. E
63
,
042103
(
2001
).
37.
B. J.
Edwards
,
M. H.
Nafar Sefiddashti
, and
B.
Khomami
, “
A method for calculating the nonequilibrium entropy of a flowing polymer melt via atomistic simulation
,”
J. Chem. Phys.
155
,
111101
(
2021
).
38.
S.
Lahiri
,
Y.
Wang
,
M.
Esposito
, and
D.
Lacoste
, “
Kinetics and thermodynamics of reversible polymerization in closed systems
,”
New J. Phys.
17
,
085008
(
2015
).
39.
M.
Gavrilov
,
R.
Chétrite
, and
J.
Bechhoefer
, “
Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs–Shannon form
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11097
11102
(
2017
).
40.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
41.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1986
).
42.
M.
Doi
, “
Theory of diffusion-controlled reaction between non-simple molecules. I
,”
Chem. Phys.
11
,
107
113
(
1975
).
43.
R.
Erban
and
S. J.
Chapman
, “
Stochastic modelling of reaction–diffusion processes: Algorithms for bimolecular reactions
,”
Phys. Biol.
6
,
046001
(
2009
).
44.
P.
de Buyl
and
E.
Nies
, “
A parallel algorithm for step- and chain-growth polymerization in molecular dynamics
,”
J. Chem. Phys.
142
,
134102
(
2015
).
45.
G.
Glatting
,
R. G.
Winkler
, and
P.
Reineker
, “
Partition function and force extension relation for a generalized freely jointed chain
,”
Macromolecules
26
,
6085
6091
(
1993
).
46.
F.
Manca
,
S.
Giordano
,
P. L.
Palla
,
R.
Zucca
,
F.
Cleri
, and
L.
Colombo
, “
Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles
,”
J. Chem. Phys.
136
,
154906
(
2012
).
47.
A.
Fiasconaro
and
F.
Falo
, “
Analytical results of the extensible freely jointed chain model
,”
Physica A
532
,
121929
(
2019
).
48.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
49.
P. W.
Atkins
and
J.
de Paula
,
Physical Chemistry
, 9th ed. (
W. H. Freeman and Company
,
New York
,
2010
).
50.
M.
von Smoluchowski
, “
Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen
,”
Z. Phys. Chem.
92U
,
129
168
(
1918
).
51.
M.
Dibak
,
C.
Fröhner
,
F.
Noé
, and
F.
Höfling
, “
Diffusion-influenced reaction rates in the presence of pair interactions
,”
J. Chem. Phys.
151
,
164105
(
2019
).
52.
T.
Schilling
, “
Coarse-grained modelling out of equilibrium
,” arXiv:2107.09972 (
2021
).

Supplementary Material

You do not currently have access to this content.