Hemorheology is known to be a major diagnostic tool for many blood-altering diseases. While hemorheological measures of blood, such as the general flow curve, shear-thinning behavior, and its yield stress, are much more studied in detail, thixotropic behavior and thermokinematic memory formation in blood are less understood. Here, we study the thermokinematic memory formation in blood, resulting in a clear sensitivity to the flow history, i.e., thixotropic behavior. We also measure the thixotropic timescale for blood flow using a well-defined flow protocol. Employing a series of in silico flow loops in which the blood is subject to a sweep down/up flow, we measure and discuss the dependence of the thixotropic timescale to the concentration of fibrinogen in the plasma as the main driver of structural evolution under flow.

1.
L.
Dintenfass
, “
Thixotropy of blood and proneness to thrombus formation
,”
Circ. Res.
11
(
2
),
233
239
(
1962
).
2.
G. B.
Thurston
, “
Viscoelasticity of human blood
,”
Biophys. J.
12
(
9
),
1205
1217
(
1972
).
3.
S.
Chien
,
S.
Usami
,
H. M.
Taylor
,
J. L.
Lundberg
, and
M. I.
Gregersen
, “
Effects of hematocrit and plasma proteins on human blood rheology at low shear rates
,”
J. Appl. Physiol.
21
(
1
),
81
87
(
1966
).
4.
M.
Clarion
,
M.
Deegan
,
T.
Helton
,
J.
Hudgins
,
N.
Monteferrante
,
E.
Ousley
, and
M.
Armstrong
, “
Contemporary modeling and analysis of steady state and transient human blood rheology
,”
Rheol. Acta
57
(
2
),
141
168
(
2018
).
5.
J. S.
Horner
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear
,”
J. Rheol.
62
(
2
),
577
591
(
2018
).
6.
E.
Javadi
,
Y.
Deng
,
G. E.
Karniadakis
, and
S.
Jamali
, “
In silico biophysics and hemorheology of blood hyperviscosity syndrome
,”
Biophys. J.
120
,
2723
(
2021
).
7.
O.
Baskurt
,
B.
Neu
, and
H. J.
Meiselman
,
Red Blood Cell Aggregation
(
CRC Press
,
2011
).
8.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
(
7
),
1255
1256
(
1954
).
9.
H.
Bäumler
,
B.
Neu
,
E.
Donath
, and
H.
Kiesewetter
, “
Basic phenomena of red blood cell rouleaux formation
,”
Biorheology
36
(
5–6
),
439
442
(
1999
).
10.
D. E.
Brooks
, “
The effect of neutral polymers on the electrokinetic potential of cells and other charged particles: III. Experimental studies on the dextran/erythrocyte system
,”
J. Colloid Interface Sci.
43
(
3
),
700
713
(
1973
).
11.
E. W.
Merrill
,
E. R.
Gilliland
,
T. S.
Lee
, and
E. W.
Salzman
, “
Blood rheology: Effect of fibrinogen deduced by addition
,”
Circ. Res.
18
(
4
),
437
446
(
1966
).
12.
S.
Chien
and
K. M.
Jan
, “
Red cell aggregation by macromolecules: Roles of surface adsorption and electrostatic repulsion
,”
J. Supramol. Struct.
1
(
4–5
),
385
409
(
1973
).
13.
A. N.
Beris
,
J. S.
Horner
,
S.
Jariwala
,
M.
Armstrong
, and
N. J.
Wagner
, “
Recent advances in blood rheology: A review
,”
Soft Matter
17
,
10591
(
2021
).
14.
A. J.
Apostolidis
and
A. N.
Beris
, “
Modeling of the blood rheology in steady-state shear flows
,”
J. Rheol.
58
(
3
),
607
633
(
2014
).
15.
Y.
Deng
,
D. P.
Papageorgiou
,
X.
Li
,
N.
Perakakis
,
C. S.
Mantzoros
,
M.
Dao
, and
G. E.
Karniadakis
, “
Quantifying fibrinogen-dependent aggregation of red blood cells in type 2 diabetes mellitus
,”
Biophys. J.
119
(
5
),
900
912
(
2020
).
16.
C.
Picart
,
J.-M.
Piau
,
H.
Galliard
, and
P.
Carpentier
, “
Human blood shear yield stress and its hematocrit dependence
,”
J. Rheol.
42
(
1
),
1
12
(
1998
).
17.
E. W.
Merrill
,
C. S.
Cheng
, and
G. A.
Pelletier
, “
Yield stress of normal human blood as a function of endogenous fibrinogen
,”
J. Appl. Physiol.
26
(
1
),
1
3
(
1969
).
18.
S.
Jamali
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
(
24
),
248003
(
2019
).
19.
S.
Jamali
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Time-rate-transformation framework for targeted assembly of short-range attractive colloidal suspensions
,”
Mater. Today Adv.
5
,
100026
(
2020
).
20.
M.
Nabizadeh
and
S.
Jamali
, “
Life and death of colloidal bonds control the rate-dependent rheology of gels
,”
Nat. Commun.
12
(
1
),
4274
(
2021
).
21.
R. G.
Larson
and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
(
3
),
477
501
(
2019
).
22.
R. G.
Larson
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
(
3
),
595
611
(
2015
).
23.
J.
Mewis
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
(
1
),
1
20
(
1979
).
24.
T.
Divoux
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
(
1
),
018304
(
2013
).
25.
R.
Radhakrishnan
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
(
9
),
1834
1852
(
2017
).
26.
M.
Agarwal
,
S.
Sharma
,
V.
Shankar
, and
Y. M.
Joshi
, “
Distinguishing thixotropy from viscoelasticity
,”
J. Rheol.
65
(
4
),
663
680
(
2021
).
27.
A. J.
Apostolidis
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
(
1
),
275
298
(
2015
).
28.
F. A.
Morrison
 et al,
Understanding Rheology
(
Oxford University Press
,
New York
,
2001
), Vol. 1.
29.
P. R.
de Souza Mendes
and
R. L.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Non-Newtonian Fluid Mech.
187–188
,
8
15
(
2012
).
30.
M.
Geri
,
R.
Venkatesan
,
K.
Sambath
, and
G. H.
McKinley
, “
Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils
,”
J. Rheol.
61
(
3
),
427
454
(
2017
).
31.
C. J.
Dimitriou
and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
(
35
),
6619
6644
(
2014
).
32.
J. S.
Horner
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof
,”
J. Rheol.
63
(
5
),
799
813
(
2019
).
33.
M.
Armstrong
,
M.
Scully
,
M.
Clark
,
T.
Corrigan
, and
C.
James
, “
A simple approach for adding thixotropy to an elasto-visco-plastic rheological model to facilitate structural interrogation of human blood
,”
J. Non-Newtonian Fluid Mech.
290
,
104503
(
2021
).
34.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
(
3
),
155
(
1992
).
35.
D. A.
Fedosov
, “
Multiscale modeling of blood flow and soft matter
,”
Ph.D. thesis
(
Brown University
,
2010
).
36.
A.
Yazdani
,
Y.
Deng
,
H.
Li
,
E.
Javadi
,
Z.
Li
,
S.
Jamali
,
C.
Lin
,
J. D.
Humphrey
,
C. S.
Mantzoros
, and
G. E.
Karniadakis
, “
Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood
,”
J. R. Soc., Interface
18
(
175
),
20200834
(
2021
).
37.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Systematic coarse-graining of spectrin-level red blood cell models
,”
Comput. Methods Appl. Mech. Eng.
199
(
29–32
),
1937
1948
(
2010
).
38.
Y.
Liu
,
L.
Zhang
,
X.
Wang
, and
W. K.
Liu
, “
Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics
,”
Int. J. Numer. Methods Fluids
46
(
12
),
1237
1252
(
2004
).
39.
S.
Jamali
and
G. H.
McKinley
, “
The Mnemosyne number and the rheology of remembrance
,” arXiv:2201.01201 (
2022
).
40.
T.
Divoux
,
E.
Bertin
,
V.
Vidal
, and
J. C.
Géminard
, “
Intermittent outgassing through a non-Newtonian fluid
,”
Phys. Rev. E
79
(
5
),
056204
(
2009
).
41.
E.
Javadi
and
S.
Jamali
, “
Hemorheology: The critical role of flow type in blood viscosity measurements
,”
Soft Matter
17
(
37
),
8446
8458
(
2021
).
42.
J.
Choi
,
M.
Armstrong
, and
S. A.
Rogers
, “
The role of elasticity in thixotropy: Transient elastic stress during stepwise reduction in shear rate
,”
Phys. Fluids
33
(
3
),
033112
(
2021
).

Supplementary Material

You do not currently have access to this content.