Correlated spectral fluctuations were suggested to coordinate excitation transport inside natural light harvesting complexes. We demonstrate the capacities of 2D line shapes from fifth-order coherent electronic signals (R5-2D) to report on such fluctuations in molecular aggregates and present a stochastic approach to fluctuations in correlated site and bi-exciton binding energies in the optical dynamics of Frenkel excitons. The model is applied to R5-2D line shapes of a homodimer, and we show that the peak tilt dynamics are a measure for site energy disorder, inter-site correlation, and the strength of bi-exciton binding energy fluctuations.

1.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
(
2001
).
2.
S. F.
Huelga
and
M. B.
Plenio
,
Contemp. Phys.
54
,
181
(
2013
).
3.
V.
Perlík
,
J.
Seibt
,
L. J.
Cranston
,
R. J.
Cogdell
,
C. N.
Lincoln
,
J.
Savolainen
,
F.
Šanda
,
T.
Mančal
, and
J.
Hauer
,
J. Chem. Phys.
142
,
212434
(
2015
).
4.
J. C.
Dean
,
T.
Mirkovic
,
Z. S. D.
Toa
,
D. G.
Oblinsky
, and
G. D.
Scholes
,
Chem
1
,
858
(
2016
).
5.
B. S.
Rolczynski
,
H.
Zheng
,
V. P.
Singh
,
P.
Navotnaya
,
A. R.
Ginzburg
,
J. R.
Caram
,
K.
Ashraf
,
A. T.
Gardiner
,
S.-H.
Yeh
,
S.
Kais
,
R. J.
Cogdell
, and
G. S.
Engel
,
Chem
4
,
138
(
2018
).
6.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H.-S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
,
Sci. Adv.
6
,
eaaz4888
(
2020
).
7.
L.
Wang
,
M. A.
Allodi
, and
G. S.
Engel
,
Nat. Rev. Chem.
3
,
477
(
2019
).
8.
O.
Rancova
,
R.
Jankowiak
, and
D.
Abramavicius
,
J. Phys. Chem. B
122
,
1348
(
2018
).
9.
B.
Brüggemann
and
T.
Pullerits
,
New J. Phys.
13
,
025024
(
2011
).
10.
J.
Dostál
,
F.
Fennel
,
F.
Koch
,
S.
Herbst
,
F.
Würthner
, and
T.
Brixner
,
Nat. Commun.
9
,
2466
(
2018
).
11.
V.
May
,
J. Chem. Phys.
140
,
054103
(
2014
).
12.
C.
Heshmatpour
,
J.
Hauer
, and
F.
Šanda
,
Chem. Phys.
528
,
110433
(
2020
).
13.
J.
Lüttig
,
T.
Brixner
, and
P.
Malý
,
J. Chem. Phys.
154
,
154202
(
2021
).
14.
C.
Heshmatpour
,
P.
Malevich
,
F.
Plasser
,
M.
Menger
,
C.
Lambert
,
F.
Šanda
, and
J.
Hauer
,
J. Phys. Chem. Lett.
11
,
7776
(
2020
).
15.
P.
Malý
,
J.
Lüttig
,
A.
Turkin
,
J.
Dostál
,
C.
Lambert
, and
T.
Brixner
,
Chem. Sci.
11
,
456
(
2020
).
16.
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
084502
(
2006
).
17.
K.
Kwak
,
S.
Park
,
I. J.
Finkelstein
, and
M. D.
Fayer
,
J. Chem. Phys.
127
,
124503
(
2007
).
18.
F.
Šanda
,
V.
Perlík
,
C. N.
Lincoln
, and
J.
Hauer
,
J. Phys. Chem. A
119
,
10893
(
2015
).
19.
F.
Šanda
and
S.
Mukamel
,
Phys. Rev. Lett.
98
,
080603
(
2007
).
20.
G. E.
Uhlenbeck
and
L. S.
Ornstein
,
Phys. Rev.
36
,
823
(
1930
).
21.
R.
Kubo
,
J. Phys. Soc. Jpn.
9
,
935
(
1954
).
22.
23.
V.
Sláma
,
V.
Perlík
,
H.
Langhals
,
A.
Walter
,
T.
Mančal
,
J.
Hauer
, and
F.
Šanda
,
Front. Chem.
8
,
579166
(
2020
).
24.
D.
Abramavicius
,
B.
Palmieri
,
D. V.
Voronine
,
F.
Šanda
, and
S.
Mukamel
,
Chem. Rev.
109
,
2350
(
2009
).
25.
M. D.
Donsker
,
Mem. Am. Math. Soc.
6
,
1
(
1951
).
26.
N. J.
Higham
,
Wiley Interdiscip. Rev.: Comput. Stat.
1
,
251
(
2009
).
27.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley-VCH Verlag
,
2011
).
28.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
29.
T.
Pullerits
,
M.
Chachisvilis
, and
V.
Sundström
,
J. Phys. Chem.
100
,
10787
(
1996
).
30.
B.
Brüggemann
,
J. L.
Herek
,
V.
Sundström
,
T.
Pullerits
, and
V.
May
,
J. Phys. Chem. B
105
,
11391
(
2001
).
31.
B.
Brüggemann
,
N.
Christensson
, and
T.
Pullerits
,
Chem. Phys.
357
,
140
(
2009
).
32.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
33.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
34.
F.
Šanda
and
S.
Mukamel
,
J. Phys. Chem. B
112
,
14212
(
2008
).
35.
36.
R. W.
Zwanzig
,
Lectures in Theoretical Physics
(
Interscience
,
New York, NY
,
1960
), Vol. 3, p.
106
.
37.
V.
Perlík
and
F.
Šanda
,
J. Chem. Phys.
147
,
084104
(
2017
).
38.
P.
Malý
,
S.
Mueller
,
J.
Lüttig
,
C.
Lambert
, and
T.
Brixner
,
J. Chem. Phys.
153
,
144204
(
2020
).
39.
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
40.
D.
Abramavicius
,
L.
Valkunas
, and
S.
Mukamel
,
Europhys. Lett.
80
,
17005
(
2007
).
41.
F.
Domínguez-Adame
,
Phys. Rev. B
51
,
12801
(
1995
).
42.
V. A.
Malyshev
,
A.
Rodríguez
, and
F.
Domínguez-Adame
,
Phys. Rev. B
60
,
14140
(
1999
).
44.
M.
Bednarz
and
P.
Reineker
,
J. Lumin.
119–120
,
482
(
2006
).
46.
J.
Knoester
,
J. Chem. Phys.
99
,
8466
(
1993
).
47.
J. R.
Durrant
,
J.
Knoester
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
222
,
450
(
1994
).
48.
D.
Abramavicius
and
S.
Mukamel
,
J. Chem. Phys.
134
,
174504
(
2011
).
49.
J.
Lim
,
D. J.
Ing
,
J.
Rosskopf
,
J.
Jeske
,
J. H.
Cole
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
146
,
024109
(
2017
).
50.
T. N.
Do
,
L.
Chen
,
A. K.
Belyaev
,
H.-S.
Tan
, and
M. F.
Gelin
,
Chem. Phys.
515
,
119
(
2018
).
51.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
You do not currently have access to this content.