Certain biochemical reactions can only be triggered after binding a sufficient number of particles to a specific target region such as an enzyme or a protein sensor. We investigate the distribution of the reaction time, i.e., the first instance when all independently diffusing particles are bound to the target. When each particle binds irreversibly, this is equivalent to the first-passage time of the slowest (last) particle. In turn, reversible binding to the target renders the problem much more challenging and drastically changes the distribution of the reaction time. We derive the exact solution of this problem and investigate the short-time and long-time asymptotic behaviors of the reaction time probability density. We also analyze how the mean reaction time depends on the unbinding rate and the number of particles. Our exact and asymptotic solutions are compared to Monte Carlo simulations.

1.
D. A.
Lauffenburger
and
J.
Linderman
,
Receptors: Models for Binding, Trafficking, and Signaling
(
Oxford University Press
,
Oxford
,
1993
).
2.
B.
Alberts
 et al,
Molecular Biology of the Cell
, 5th ed. (
Garland Science, Taylor & Francis Group
,
New York
,
2008
).
3.
S.
Redner
,
A Guide to First Passage Processes
(
Cambridge University Press
,
Cambridge
,
2001
).
4.
Z.
Schuss
,
Brownian Dynamics at Boundaries and Interfaces in Physics, Chemistry, and Biology
(
Springer
,
New York
,
2013
).
5.
First-Passage Phenomena and Their Applications
, edited by
R.
Metzler
,
G.
Oshanin
, and
S.
Redner
(
World Scientific
,
Singapore
,
2014
).
6.
Chemical Kinetics: Beyond The Textbook
, edited by
G.
Oshanin
,
R.
Metzler
, and
K.
Lindenberg
(
World Scientific
,
New Jersey
,
2019
).
7.
D. S.
Grebenkov
, “
NMR survey of reflected Brownian motion
,”
Rev. Mod. Phys.
79
,
1077
1137
(
2007
).
8.
O.
Bénichou
and
R.
Voituriez
, “
From first-passage times of random walks in confinement to geometry-controlled kinetics
,”
Phys. Rep.
539
,
225
284
(
2014
).
9.
D.
Holcman
and
Z.
Schuss
, “
The narrow escape problem
,”
SIAM Rev.
56
,
213
257
(
2014
).
10.
I. V.
Grigoriev
,
Y. A.
Makhnovskii
,
A. M.
Berezhkovskii
, and
V. Y.
Zitserman
, “
Kinetics of escape through a small hole
,”
J. Chem. Phys.
116
,
9574
(
2002
).
11.
A.
Singer
,
Z.
Schuss
,
D.
Holcman
, and
R. S.
Eisenberg
, “
Narrow escape. Part I
,”
J. Stat. Phys.
122
,
437
463
(
2006
).
12.
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
, “
Narrow escape. Part II. The circular disk
,”
J. Stat. Phys.
122
,
465
(
2006
).
13.
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
, “
Narrow escape. Part III. Riemann surfaces and non-smooth domains
,”
J. Stat. Phys.
122
,
491
(
2006
).
14.
S.
Condamin
,
O.
Bénichou
,
V.
Tejedor
,
R.
Voituriez
, and
J.
Klafter
, “
First-passage time in complex scale-invariant media
,”
Nature
450
,
77
(
2007
).
15.
O.
Bénichou
and
R.
Voituriez
, “
Narrow-escape time problem: Time needed for a particle to exit a confining domain through a small window
,”
Phys. Rev. Lett.
100
,
168105
(
2008
).
16.
O.
Bénichou
,
D.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Optimal reaction time for surface-mediated diffusion
,”
Phys. Rev. Lett.
105
,
150606
(
2010
).
17.
O.
Bénichou
,
C.
Chevalier
,
J.
Klafter
,
B.
Meyer
, and
R.
Voituriez
, “
Geometry-controlled kinetics
,”
Nat. Chem.
2
,
472
477
(
2010
).
18.
S.
Pillay
,
M. J.
Ward
,
A.
Peirce
, and
T.
Kolokolnikov
, “
An asymptotic analysis of the mean first passage time for narrow escape problems. Part I. Two-dimensional domains
,”
SIAM Multiscale Model. Simul.
8
,
803
835
(
2010
).
19.
A. F.
Cheviakov
,
M. J.
Ward
, and
R.
Straube
, “
An asymptotic analysis of the mean first passage time for narrow escape problems. Part II. The sphere
,”
SIAM Multiscale Model. Simul.
8
,
836
870
(
2010
).
20.
D. S.
Grebenkov
, “
Searching for partially reactive sites: Analytical results for spherical targets
,”
J. Chem. Phys.
132
,
034104
(
2010
).
21.
A. F.
Cheviakov
,
A. S.
Reimer
, and
M. J.
Ward
, “
Mathematical modeling and numerical computation of narrow escape problems
,”
Phys. Rev. E
85
,
021131
(
2012
).
22.
C.
Caginalp
and
X.
Chen
, “
Analytical and numerical results for an escape problem
,”
Arch. Ration. Mech. Anal.
203
,
329
342
(
2012
).
23.
T. G.
Mattos
,
C.
Mejía-Monasterio
,
R.
Metzler
, and
G.
Oshanin
, “
First passages in bounded domains: When is the mean first passage time meaningful
,”
Phys. Rev. E
86
,
031143
(
2012
).
24.
A. M.
Berezhkovsky
and
L.
Dagdug
, “
Effect of binding on escape from cavity through narrow tunnel
,”
J. Chem. Phys.
136
,
124110
(
2012
).
25.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Exit time distribution in spherically symmetric two-dimensional domains
,”
J. Stat. Phys.
158
,
192
230
(
2015
).
26.
A.
Godec
and
R.
Metzler
, “
First passage time distribution in heterogeneity controlled kinetics: Going beyond the mean first passage time
,”
Sci. Rep.
6
,
20349
(
2016
).
27.
A.
Godec
and
R.
Metzler
, “
Universal proximity effect in target search kinetics in the few-encounter limit
,”
Phys. Rev. X
6
,
041037
(
2016
).
28.
D. S.
Grebenkov
, “
Universal formula for the mean first passage time in planar domains
,”
Phys. Rev. Lett.
117
,
260201
(
2016
).
29.
J. S.
Marshall
, “
Analytical solutions for an escape problem in a disc with an arbitrary distribution of exit holes along its boundary
,”
J. Stat. Phys.
165
,
920
952
(
2016
).
30.
D. S.
Grebenkov
and
G.
Oshanin
, “
Diffusive escape through a narrow opening: New insights into a classic problem
,”
Phys. Chem. Chem. Phys.
19
,
2723
2739
(
2017
).
31.
Y.
Lanoiselée
,
N.
Moutal
, and
D. S.
Grebenkov
, “
Diffusion-limited reactions in dynamic heterogeneous media
,”
Nat. Commun.
9
,
4398
(
2018
).
32.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Towards a full quantitative description of single-molecule reaction kinetics in biological cells
,”
Phys. Chem. Chem. Phys.
20
,
16393
16401
(
2018
).
33.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control
,”
Commun. Chem.
1
,
96
(
2018
).
34.
V.
Sposini
,
A.
Chechkin
, and
R.
Metzler
, “
First passage statistics for diffusing diffusivity
,”
J. Phys. A: Math. Theor.
52
,
04LT01
(
2019
).
35.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Full distribution of first exit times in the narrow escape problem
,”
New J. Phys.
21
,
122001
(
2019
).
36.
N.
Levernier
,
M.
Dolgushev
,
O.
Bénichou
,
R.
Voituriez
, and
T.
Guérin
, “
Survival probability of stochastic processes beyond persistence exponents
,”
Nat. Commun.
10
,
2990
(
2019
).
37.
D. S.
Grebenkov
, “
Spectral theory of imperfect diffusion-controlled reactions on heterogeneous catalytic surfaces
,”
J. Chem. Phys.
151
,
104108
(
2019
).
38.
D.
Hartich
and
A.
Godec
, “
Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit
,”
J. Phys. A: Math. Theor.
52
,
244001
(
2019
).
39.
D.
Hartich
and
A.
Godec
, “
Interlacing relaxation and first-passage phenomena in reversible discrete and continuous space Markovian dynamics
,”
J. Stat. Mech.
2019
,
024002
.
40.
D. S.
Grebenkov
, “
Paradigm shift in diffusion-mediated surface phenomena
,”
Phys. Rev. Lett.
125
,
078102
(
2020
).
41.
D. S.
Grebenkov
, “
Diffusion toward non-overlapping partially reactive spherical traps: Fresh insights onto classic problems
,”
J. Chem. Phys.
152
,
244108
(
2020
).
42.
S. N.
Majumdar
,
A.
Pal
, and
G.
Schehr
, “
Extreme value statistics of correlated random variables: A pedagogical review
,”
Phys. Rep.
840
,
1
32
(
2020
).
43.
G. H.
Weiss
,
K. E.
Shuler
, and
K.
Lindenberg
, “
Order statistics for first passage times in diffusion processes
,”
J. Stat. Phys.
31
,
255
278
(
1983
).
44.
K.
Basnayake
,
A.
Hubl
,
Z.
Schuss
, and
D.
Holcman
, “
Extreme narrow escape: Shortest paths for the first particles among n to reach a target window
,”
Phys. Lett. A
382
,
3449
3454
(
2018
).
45.
K.
Basnayake
,
Z.
Schuss
, and
D.
Holcman
, “
Asymptotic formulas for extreme statistics of escape times in 1, 2 and 3-dimensions
,”
J. Nonlinear Sci.
29
,
461
499
(
2019
).
46.
S. D.
Lawley
and
J. B.
Madrid
, “
A probabilistic approach to extreme statistics of Brownian escape times in dimensions 1, 2, and 3
,”
J. Nonlinear Sci.
30
,
1207
1227
(
2020
).
47.
S. D.
Lawley
, “
Distribution of extreme first passage times of diffusion
,”
J. Math. Biol.
80
,
2301
2325
(
2020
).
48.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
From single-particle stochastic kinetics to macroscopic reaction rates: Fastest first-passage time of N random walkers
,”
New J. Phys.
22
,
103004
(
2020
).
49.
K.
Reynaud
,
Z.
Schuss
,
N.
Rouach
, and
D.
Holcman
, “
Why so many sperm cells
,”
Commun. Integr. Biol.
8
,
e1017156
(
2015
).
50.
Z.
Schuss
,
K.
Basnayake
, and
D.
Holcman
, “
Redundancy principle and the role of extreme statistics in molecular and cellular biology
,”
Phys. Life Rev.
28
,
52
79
(
2019
).
51.
J. B.
Madrid
and
S. D.
Lawley
, “
Competition between slow and fast regimes for extreme first passage times of diffusion
,”
J. Phys. A: Math. Theor.
53
,
335002
(
2020
).
52.
M.
Reva
,
D. A.
DiGregorio
, and
D. S.
Grebenkov
, “
A first-passage approach to diffusion-influenced reversible binding: Insights into nanoscale signaling at the presynapse
,”
Sci. Rep.
11
,
5377
(
2021
).
53.
D. S.
Grebenkov
, “
First passage times for multiple particles with reversible target-binding kinetics
,”
J. Chem. Phys.
147
,
134112
(
2017
).
54.
S. D.
Lawley
and
J. B.
Madrid
, “
First passage time distribution of multiple impatient particles with reversible binding
,”
J. Chem. Phys.
150
,
214113
(
2019
).
55.
M. J.
Berridge
,
M. D.
Bootman
, and
H. L.
Roderick
, “
Calcium signalling: Dynamics, homeostasis and remodelling
,”
Nat. Rev. Mol. Cell Biol.
4
,
517
(
2003
).
56.
E.
Eggermann
,
I.
Bucurenciu
,
S. P.
Goswami
, and
P.
Jonas
, “
Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses
,”
Nat. Rev. Neurosci.
13
,
7
21
(
2012
).
57.
M.
Dittrich
 et al “
An excess-calcium-binding-site model predicts neurotransmitter release at the neuromuscular junction
,”
Biophys. J.
104
,
2751
2763
(
2013
).
58.
Y.
Nakamura
 et al, “
Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development
,”
Neuron
85
,
145
158
(
2015
).
59.
C.
Guerrier
and
D.
Holcman
, “
Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses
,”
Sci. Rep.
6
,
35506
(
2016
).
60.
F. C.
Collins
and
G. E.
Kimball
, “
Diffusion-controlled reaction rates
,”
J. Colloid Sci.
4
,
425
(
1949
).
61.
H.
Sano
and
M.
Tachiya
, “
Partially diffusion-controlled recombination
,”
J. Chem. Phys.
71
,
1276
1282
(
1979
).
62.
D.
Shoup
and
A.
Szabo
, “
Role of diffusion in ligand binding to macromolecules and cell-bound receptors
,”
Biophys. J.
40
,
33
(
1982
).
63.
R.
Zwanzig
, “
Diffusion-controlled ligand binding to spheres partially covered by receptors: An effective medium treatment
,”
Proc. Natl. Acad. Sci. U. S. A.
87
,
5856
(
1990
).
64.
B.
Sapoval
, “
General formulation of Laplacian transfer across irregular surfaces
,”
Phys. Rev. Lett.
73
,
3314
3317
(
1994
).
65.
M.
Filoche
and
B.
Sapoval
, “
Can one hear the shape of an electrode? II. Theoretical study of the Laplacian transfer
,”
Eur. Phys. J. B
9
,
755
763
(
1999
).
66.
O.
Bénichou
,
M.
Moreau
, and
G.
Oshanin
, “
Kinetics of stochastically gated diffusion-limited reactions and geometry of random walk trajectories
,”
Phys. Rev. E
61
,
3388
3406
(
2000
).
67.
D. S.
Grebenkov
,
M.
Filoche
, and
B.
Sapoval
, “
Spectral properties of the Brownian self-transport operator
,”
Eur. Phys. J. B
36
,
221
231
(
2003
).
68.
A. M.
Berezhkovskii
,
Y. A.
Makhnovskii
,
M. I.
Monine
,
V. Y.
Zitserman
, and
S. Y.
Shvartsman
, “
Boundary homogenization for trapping by patchy surfaces
,”
J. Chem. Phys.
121
,
11390
(
2004
).
69.
D. S.
Grebenkov
, “
Partially reflected Brownian motion: A stochastic approach to transport phenomena
,” in
Focus on Probability Theory
, edited by
L. R.
Velle
(
Nova Science Publishers
,
2006
), pp.
135
169
.
70.
D. S.
Grebenkov
,
M.
Filoche
, and
B.
Sapoval
, “
Mathematical basis for a general theory of Laplacian transport towards irregular interfaces
,”
Phys. Rev. E
73
,
021103
(
2006
).
71.
J.
Reingruber
and
D.
Holcman
, “
Gated narrow escape time for molecular signaling
,”
Phys. Rev. Lett.
103
,
148102
(
2009
).
72.
S. D.
Lawley
and
J. P.
Keener
, “
A new derivation of Robin boundary conditions through homogenization of a stochastically switching boundary
,”
SIAM J. Appl. Dyn. Syst.
14
,
1845
1867
(
2015
).
73.
A. J.
Bernoff
,
A. E.
Lindsay
, and
D. D.
Schmidt
, “
Boundary homogenization and capture time distributions of semipermeable membranes with periodic patterns of reactive sites
,”
Multiscale Model. Simul.
16
,
1411
1447
(
2018
).
74.
D. S.
Grebenkov
and
B.-T.
Nguyen
, “
Geometrical structure of Laplacian eigenfunctions
,”
SIAM Rev.
55
,
601
667
(
2013
).
75.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
Berlin
,
1985
).
76.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford University Press
,
1959
).
You do not currently have access to this content.