Kinetics of singlet fission (SF) in molecular semiconductors, i.e., spontaneous splitting of the excited singlet state into a pair of triplet (T) excitons, is known to be strongly affected by geminate annihilation of created TT-pairs. In our work, we analyze in detail the specific properties of SF-kinetics in highly anisotropic molecular crystals (in which T-excitons undergo strongly anisotropic hopping migration) within the earlier proposed two-state model (TSM). This model allows for accurate treatment of the characteristic effects of anisotropic relative migration of T-excitons and TT-interaction on SF-kinetics, describing these effects within the approximation, that assumes kinetic coupling of two states: the [TT]-state of interacting TT-pairs and the [T + T]-state of freely migrating T-excitons. The TSM makes it possible to represent the TT-migration and interaction effects in terms of lattice-migration Green’s functions, accurate analytical formulas that are obtained in this work. The TSM is applied to the analysis of SF-kinetics in rubrene single crystals, recently measured in a wide range of times (0.1 ns < t < 104 ns). The analysis enables one to obtain important information on specific properties of SF-kinetics in highly anisotropic crystals. In particular, the observed specific “hump” of SF-kinetics at intermediate times can be treated as a manifestation of the TT-coupling in the [TT]-state. It is also found that the characteristic asymptotic time-dependence of SF-kinetics (t3/2) can markedly be distorted by spin relaxation in TT-pairs.

1.
M. B.
Smith
and
J.
Michl
,
Chem. Rev.
110
,
6891
(
2010
).
2.
C. E.
Swenberg
and
N. E.
Geacintov
, in
Organic Molecular Photophysics
, edited by
J. B.
Birks
(
Wiley & Sons
,
Bristol
,
1973
), Vol. 1.
3.
M. B.
Smith
and
J.
Michl
,
Annu. Rev. Phys. Chem.
64
,
361
(
2013
).
5.
K.
Miyata
,
F. S.
Conrad-Burton
,
F. L.
Geyer
, and
X.-Y.
Zhu
,
Chem. Rev.
119
,
4261
(
2019
).
6.
R. C.
Johnson
and
R. E.
Merrifield
,
Phys. Rev. B
1
,
896
(
1970
).
8.
S. N.
Konyaev
,
A. I.
Shushin
,
L. I.
Kolesnikova
,
M. M.
Tribel
, and
E. L.
Frankevich
,
Phys. Status Solidi B
142
,
461
(
1987
).
9.
V. V.
Tarasov
,
G. E.
Zoriniants
,
A. I.
Shushin
, and
M. M.
Triebel
,
Chem. Phys. Lett.
267
,
58
(
1997
).
10.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
,
J. Chem. Phys.
138
,
114102
(
2013
).
11.
P.
Irkhin
and
I.
Biaggio
,
Phys. Rev. Lett.
107
,
017402
(
2011
).
12.
A.
Ryasnyanskiy
and
I.
Biaggio
,
Phys. Rev. B
84
,
193203
(
2011
).
13.
S. T.
Roberts
,
R. E.
McAnally
,
J. N.
Mastron
,
D. H.
Webber
,
M. T.
Whited
,
R. L.
Brutchey
,
M. E.
Thompson
, and
S. E.
Bradforth
,
J. Am. Chem. Soc.
134
,
6388
(
2012
).
14.
S. W.
Eaton
,
L. E.
Shoer
,
S. D.
Karlen
,
S. M.
Dyar
,
E. A.
Margulies
,
B. S.
Veldkamp
,
C.
Ramanan
,
D. A.
Hartzler
,
S.
Savikhin
,
T. J.
Marks
, and
M. R.
Wasielewski
,
J. Am. Chem. Soc.
135
,
14701
(
2013
).
15.
S. W.
Eaton
,
S. A.
Miller
,
E. A.
Margulies
,
L. E.
Shoer
,
R. D.
Schaller
, and
M. R.
Wasielewski
,
J. Phys. Chem. A
119
,
4151
(
2015
).
16.
T.
Yago
,
K.
Ishikawa
,
R.
Katoh
, and
M.
Wakasa
,
J. Phys. Chem. C
120
,
27858
(
2016
).
17.
R.
Katoh
,
M.
Hashimoto
,
A.
Takahashi
,
Y.
Sonoda
,
T.
Yago
, and
M.
Wakasa
,
J. Phys. Chem. C
121
,
25666
(
2017
).
18.
A.
Carrington
and
A. D.
McLachlan
,
Introduction to Magnetic Resonance
(
Harper & Row, Publishers
,
New York
,
1967
).
19.
R.
Tempelaar
and
D. R.
Reichman
,
J. Chem. Phys.
146
,
174703
(
2017
).
20.
R.
Tempelaar
and
D. R.
Reichman
,
J. Chem. Phys.
146
,
174704
(
2017
).
21.
R.
Tempelaar
and
D. R.
Reichman
,
J. Chem. Phys.
148
,
244701
(
2018
).
22.
G. B.
Piland
,
J. J.
Burdett
,
D.
Kurunthu
, and
C. J.
Bardeen
,
J. Phys. Chem. C
117
,
1224
(
2013
).
23.
J. J.
Burdett
,
G. B.
Piland
, and
C. J.
Bardeen
,
Chem. Phys. Lett.
585
,
1
(
2013
).
24.
G. B.
Piland
,
J. J.
Burdett
,
R. J.
Dillon
, and
C. J.
Bardeen
,
J. Phys. Chem. Lett.
5
,
2312
(
2014
).
25.
G. B.
Piland
and
C. J.
Bardeen
,
J. Phys. Chem. Lett.
6
,
1841
(
2015
).
26.
K.
Seki
,
Y.
Sonoda
, and
R.
Katoh
,
J. Phys. Chem. C
122
,
11659
(
2018
).
27.
K.
Seki
,
T.
Yoshida
,
T.
Yago
,
M.
Wakasa
, and
R.
Katoh
,
J. Phys. Chem. C
125
,
3295
(
2021
).
28.
E. A.
Wolf
and
I.
Biaggio
,
Phys. Rev. B
103
,
L201201
(
2021
).
29.
A. I.
Shushin
,
Chem. Phys. Lett.
118
,
197
(
1985
).
30.
A. I.
Shushin
,
J. Chem. Phys.
95
,
3657
(
1991
).
31.
A. I.
Shushin
,
J. Chem. Phys.
97
,
1954
(
1992
).
32.
A. I.
Shushin
,
Chem. Phys. Lett.
678
,
283
(
2017
).
33.
A. I.
Shushin
,
Chem. Phys. Lett.
712
,
165
(
2018
).
34.
A. I.
Shushin
,
J. Chem. Phys.
151
,
034103
(
2019
).
35.
U. E.
Steiner
and
T.
Ulrich
,
Chem. Rev.
89
,
51
(
1989
).
36.
J. B.
Pedersen
and
J. H.
Freed
,
J. Chem. Phys.
57
,
1004
(
1972
).
37.
38.
J. B.
Pedersen
,
A. I.
Shushin
, and
J. S.
Jørgensen
,
Chem. Phys.
189
,
479
(
1994
).
39.
K.
Blum
,
Density Matrix Theory and Applications
(
Plenum Press
,
New York
,
1981
).
40.
A. I.
Shushin
,
Phys. Rev. B
84
,
115212
(
2011
);
A. I.
Shushin
Phys. Rev. B
86
,
035206-1
035206-10
(
2012
).
41.
M. A.
Lavrentev
and
B. V.
Shabat
,
Methods of the Theory of Functions of Complex Variable
(
Nauka
,
Moscow
,
1987
).
42.
A. A.
Maradudin
,
E. W.
Montroll
, and
G. H.
Weiss
,
Theory of Lattice Dynamics in the Harmonic Approximation
(
Academic Press
,
New York
,
1963
).
43.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
National Bureau of Standards
,
Washington
,
1964
).
44.
I. S.
Gradstein
and
I. M.
Ryzhick
,
Table of Integrals, Series and Products
(
Academic Press
,
London
,
2007
).
45.
T.
Morita
and
T.
Horiguchi
,
J. Math. Phys.
12
,
986
(
1971
).
46.
B.
Hughes
,
Random Walks and Random Environments
(
Oxford Science Publications 1; Clarendon Press
,
1995
).
47.
G. S.
Joyce
,
R. T.
Delves
, and
I. J.
Zucker
,
J. Phys. A: Math. Gen.
36
,
8661
(
2003
).
48.
V. I.
Lesin
and
V. P.
Sakun
,
Phys. Status Solidi B
98
,
411
(
1980
).
49.
R.
Schmidberger
and
H. C.
Wolf
,
Chem. Phys. Lett.
32
,
18
(
1975
).
50.
A. M.
Ponte Concalves
,
Chem. Phys.
19
,
397
(
1977
).
51.
You do not currently have access to this content.