Silver nanowires and nanorods are useful prototypical systems to study the emergence of plasmons within a quantum mechanical context because their high aspect ratios enable plasmons to emerge in smaller systems than for roughly spherical nanoclusters. Here, we quantify the plasmon-like character of the excited states of silver nanorods and nanowires based on three nearly orthogonal criteria: (1) collectivity, (2) dipole additivity, and (3) superatomic character. Based on these three criteria, we classify the excited states as plasmon-like, collective, single-particle, interband, or as intermediate between these categories. We show that linear nanowires have a longitudinal absorption peak that has single-particle character and a transverse absorption peak that evolves from a single-particle to plasmon-like to a mix of plasmon-like and interband with increasing length. Increasing the width tends to increase the plasmon-like character of the longitudinal excited state. In contrast, increasing the nanorod width tends to decrease the length at which interband transitions start mixing significantly into the transverse plasmon-like excited states.

1.
T. W.
Odom
and
G. C.
Schatz
,
Chem. Rev.
111
,
3667
(
2011
).
2.
R. L.
Gieseking
,
M. A.
Ratner
, and
G. C.
Schatz
,
Frontiers of Plasmon Enhanced Spectroscopy
(
American Chemical Society
,
2016
), Vol. 1, pp.
1
22
.
3.
K.
Khurana
and
N.
Jaggi
,
Plasmonics
16
,
981
(
2021
).
5.
H.-C.
Weissker
and
X.
López-Lozano
,
Phys. Chem. Chem. Phys.
17
,
28379
(
2015
).
6.
E. B.
Guidez
and
C. M.
Aikens
,
Nanoscale
6
,
11512
(
2014
).
7.
R.
Schira
and
F.
Rabilloud
,
J. Phys. Chem. C
123
,
6205
(
2019
).
8.
E. B.
Guidez
and
C. M.
Aikens
,
J. Phys. Chem. C
117
,
12325
(
2013
).
9.
F.
Alkan
and
C. M.
Aikens
,
J. Phys. Chem. C
122
,
23639
(
2018
).
10.
R.
Sinha-Roy
,
P.
García-González
,
H.-C.
Weissker
,
F.
Rabilloud
, and
A. I.
Fernández-Domínguez
,
ACS Photonics
4
,
1484
(
2017
).
11.
B.
Gao
,
K.
Ruud
, and
Y.
Luo
,
J. Chem. Phys.
137
,
194307
(
2012
).
12.
J.
Yan
and
S.
Gao
,
Phys. Rev. B
78
,
235413
(
2008
).
13.
C. M.
Aikens
,
S.
Li
, and
G. C.
Schatz
,
J. Phys. Chem. C
112
,
11272
(
2008
).
14.
M.
Zhou
,
C.
Zeng
,
Y.
Chen
,
S.
Zhao
,
M. Y.
Sfeir
,
M.
Zhu
, and
R.
Jin
,
Nat. Commun.
7
,
13240
(
2016
).
15.
O. A.
Douglas-Gallardo
,
M.
Berdakin
,
T.
Frauenheim
, and
C. G.
Sánchez
,
Nanoscale
11
,
8604
(
2019
).
16.
N. V.
Ilawe
,
M. B.
Oviedo
, and
B. M.
Wong
,
J. Mater. Chem. C
6
,
5857
(
2018
).
17.
S.
Peng
,
J. M.
McMahon
,
G. C.
Schatz
,
S. K.
Gray
, and
Y.
Sun
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
14530
(
2010
).
18.
R.
Zhang
,
L.
Bursi
,
J. D.
Cox
,
Y.
Cui
,
C. M.
Krauter
,
A.
Alabastri
,
A.
Manjavacas
,
A.
Calzolari
,
S.
Corni
,
E.
Molinari
,
E. A.
Carter
,
F. J.
García de Abajo
,
H.
Zhang
, and
P.
Nordlander
,
ACS Nano
11
,
7321
(
2017
).
19.
L.
Bursi
,
A.
Calzolari
,
S.
Corni
, and
E.
Molinari
,
ACS Photonics
3
,
520
(
2016
).
20.
R. L. M.
Gieseking
,
A. P.
Ashwell
,
M. A.
Ratner
, and
G. C.
Schatz
,
J. Phys. Chem. C
124
,
3260
(
2020
).
21.
K. L. D. M.
Weerawardene
,
P.
Pandeya
,
M.
Zhou
,
Y.
Chen
,
R.
Jin
, and
C. M.
Aikens
,
J. American Chem. Soc.
141
,
18715
(
2019
).
22.
C. M.
Krauter
,
S.
Bernadotte
,
C. R.
Jacob
,
M.
Pernpointner
, and
A.
Dreuw
,
J. Phys. Chem. C
119
,
24564
(
2015
).
23.
S.
Bernadotte
,
F.
Evers
, and
C. R.
Jacob
,
J. Phys. Chem. C
117
,
1863
(
2013
).
24.
E.
Townsend
and
G. W.
Bryant
,
J. Opt.
16
,
114022
(
2014
).
25.
J.
Ma
,
Z.
Wang
, and
L.-W.
Wang
,
Nat. Commun.
6
,
10107
(
2015
).
26.
C. M.
Krauter
,
J.
Schirmer
,
C. R.
Jacob
,
M.
Pernpointner
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
104101
(
2014
).
27.
M. M.
Müller
,
M.
Kosik
,
M.
Pelc
,
G. W.
Bryant
,
A.
Ayuela
,
C.
Rockstuhl
, and
K.
Słowik
,
J. Phys. Chem. C
124
,
24331
(
2020
).
28.
D.
Casanova
,
J. M.
Matxain
, and
J. M.
Ugalde
,
J. Phys. Chem. C
120
,
12742
(
2016
).
29.
S.
Gil-Guerrero
,
Á.
Peña-Gallego
, and
M.
Mandado
,
J. Phys. Chem. C
124
,
1585
(
2020
).
30.
M.
Walter
,
J.
Akola
,
O.
Lopez-Acevedo
,
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
R. L.
Whetten
,
H.
Gronbeck
, and
H.
Hakkinen
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
9157
(
2008
).
31.
J.-Q.
Goh
,
S.
Malola
,
H.
Häkkinen
, and
J.
Akola
,
J. Phys. Chem. C
119
,
1583
(
2015
).
32.
L.
Gell
,
A.
Kulesza
,
J.
Petersen
,
M. I. S.
Röhr
,
R.
Mitrić
, and
V.
Bonačić-Koutecký
,
J. Phys. Chem. C
117
,
14824
(
2013
).
33.
B. A.
Ashenfelter
,
A.
Desireddy
,
S. H.
Yau
,
T.
Goodson
, and
T. P.
Bigioni
,
J. Phys. Chem. C
119
,
20728
(
2015
).
34.
R. L.
Gieseking
,
M. A.
Ratner
, and
G. C.
Schatz
,
J. Phys. Chem. A
120
,
4542
(
2016
).
35.
F.
Ding
,
E. B.
Guidez
,
C. M.
Aikens
, and
X.
Li
,
J. Chem. Phys.
140
,
244705
(
2014
).
36.
B.
Montag
and
P.-G.
Reinhard
,
Phys. Rev. B
51
,
14686
(
1995
).
37.
C.
Yu
,
R.
Schira
,
H.
Brune
,
B.
von Issendorff
,
F.
Rabilloud
, and
W.
Harbich
,
Nanoscale
10
,
20821
(
2018
).
38.
E. B.
Guidez
and
C. M.
Aikens
,
Nanoscale
4
,
4190
(
2012
).
39.
H. E.
Johnson
and
C. M.
Aikens
,
J. Phys. Chem. A
113
,
4445
(
2009
).
40.
R. L. M.
Gieseking
,
Mater. Horiz.
9
,
25
(
2021
).
41.
J.
Yan
,
Z.
Yuan
, and
S.
Gao
,
Phys. Rev. Lett.
98
,
216602
(
2007
).
42.
R. L. M.
Gieseking
,
Chem. Mater.
31
,
6850
(
2019
).
43.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
44.
E.
Van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
(
2003
).
45.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
46.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
Chem. Phys. Lett.
302
,
199
(
1999
).
47.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
48.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
You do not currently have access to this content.