The development of new electrocatalysts for the hydrogen evolution reaction (HER) could reduce the dependence on Pt and other rare metals and enable large-scale production of hydrogen with near-zero carbon emissions. Mechanistic insight into the electrocatalytic activity of a material helps to accelerate the development of new electrocatalysts. Alternative electrocatalyst materials such as transition metal oxides and sulfides can undergo insertion reactions that change their properties. Recent reports indicate that the presence of inserted ions can influence the electrocatalytic activity. Here, we utilized a materials chemistry approach to understand the role of proton insertion in the HER activity of the layered tungsten oxide hydrates (WO3·xH2O, x = 1, 2). We synthesized a series of tungsten oxide hydrates along with an octylamine-pillared tungsten oxide (OA–WO3). We used cyclic voltammetry to study the electrochemical reactivity of each material and performed ex situ x-ray diffraction and Raman spectroscopy to understand bulk and surface structural changes during electrochemical cycling. We show an inverse relationship between the degree of proton insertion and HER overpotential in tungsten oxides: the lack of proton insertion leads to a high overpotential for the HER. We discuss three hypotheses for how proton insertion leads to the HER activity in WO3·xH2O: (1) proton insertion changes the electronic band structure of WO3·xH2O, (2) the presence of bulk protons can influence ΔGH,ads at the surface sites, and (3) the inserted protons may participate in the HER mechanism on WO3·xH2O. Overall, this work shows the critical role of proton insertion in enabling the high HER activity in tungsten oxides.

1.
A.
Elgowainy
,
M.
Mintz
,
U.
Lee
,
T.
Stephens
,
P.
Sun
,
K.
Reddi
,
Y.
Zhou
,
G.
Zang
,
M.
Ruth
,
P.
Jadun
,
E.
Connelly
, and
R.
Boardman
, “
Assessment of potential future demands for hydrogen in the United States
,” Technical Report No. ANL-20/35 (Argonne National Lab, Argonne, IL,
2020
).
2.
L.
Wu
and
J. P.
Hofmann
, “
Comparing the intrinsic HER activity of transition metal dichalcogenides: Pitfalls and suggestions
,”
ACS Energy Lett.
6
,
2619
(
2021
).
3.
M. W.
Menezes
,
D. R.
Simmons
,
S.
Winberg
,
R.
Baranwal
,
P.
Hoffman
,
C.
Fall
, and
S. L.
Gentaowski
, Program Plan (US Department of Energy, Washington, DC,
2020
); available at https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf.
4.
Y.
Zhu
,
Q.
Lin
,
Y.
Zhong
,
H. A.
Tahini
,
Z.
Shao
, and
H.
Wang
, “
Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts
,”
Energy Environ. Sci.
13
,
3361
(
2020
).
5.
T. F.
Jaramillo
,
K. P.
Jørgensen
,
J.
Bonde
,
J. H.
Nielsen
,
S.
Horch
, and
I.
Chorkendorff
, “
Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts
,”
Science
317
,
100
(
2007
).
6.
Y.
Shi
and
B.
Zhang
, “
Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction
,”
Chem. Soc. Rev.
45
,
1529
(
2016
).
7.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Nørskov
, and
T. F.
Jaramillo
, “
Combining theory and experiment in electrocatalysis: Insights into materials design
,”
Science
355
,
eaad4998
(
2017
).
8.
J. T.
Mefford
,
A. R.
Akbashev
,
M.
Kang
,
C. L.
Bentley
,
W. E.
Gent
,
H. D.
Deng
,
D. H.
Alsem
,
Y.-S.
Yu
,
N. J.
Salmon
,
D. A.
Shapiro
,
P. R.
Unwin
, and
W. C.
Chueh
, “
Correlative operando microscopy of oxygen evolution electrocatalysts
,”
Nature
593
,
67
(
2021
).
9.
M.
Su
,
W.
Zhou
,
Z.
Jiang
,
M.
Chen
,
X.
Luo
,
J.
He
, and
C.
Yuan
, “
Elimination of interlayer potential barriers of chromium sulfide by self-intercalation for enhanced hydrogen evolution reaction
,”
ACS Appl. Mater. Interfaces
13
,
13055
(
2021
).
10.
S.
Parvin
,
V.
Hazra
,
A. G.
Francis
,
S. K.
Pati
, and
S.
Bhattacharyya
, “
In situ cation intercalation in the interlayer of tungsten sulfide with overlaying layered double hydroxide in a 2D heterostructure for facile electrochemical redox activity
,”
Inorg. Chem.
60
,
6911
(
2021
).
11.
N. H.
Attanayake
,
A. C.
Thenuwara
,
A.
Patra
,
Y. V.
Aulin
,
T. M.
Tran
,
H.
Chakraborty
,
E.
Borguet
,
M. L.
Klein
,
J. P.
Perdew
, and
D. R.
Strongin
, “
Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction
,”
ACS Energy Lett.
3
,
7
(
2018
).
12.
R.
Gao
,
G.
Yu
,
W.
Chen
,
G.-D.
Li
,
S.
Gao
,
Z.
Zhang
,
X.
Shen
,
X.
Huang
, and
X.
Zou
, “
Host–guest interaction creates hydrogen-evolution electrocatalytic active sites in 3d transition metal-intercalated titanates
,”
ACS Appl. Mater. Interfaces
10
,
696
(
2018
).
13.
J. B.
Mitchell
,
N. R.
Geise
,
A. R.
Paterson
,
N. C.
Osti
,
Y.
Sun
,
S.
Fleischmann
,
R.
Zhang
,
L. A.
Madsen
,
M. F.
Toney
,
D.-e.
Jiang
,
A. I.
Kolesnikov
,
E.
Mamontov
, and
V.
Augustyn
, “
Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates
,”
ACS Energy Lett.
4
,
2805
(
2019
).
14.
J. B.
Mitchell
,
W. C.
Lo
,
A.
Genc
,
J.
LeBeau
, and
V.
Augustyn
, “
Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide
,”
Chem. Mater.
29
,
3928
(
2017
).
15.
M. L.
Freedman
, “
The tungstic acids
,”
J. Am. Chem. Soc.
81
,
3834
(
1959
).
16.
D.
Chen
,
T.
Li
,
L.
Yin
,
X.
Hou
,
X.
Yu
,
Y.
Zhang
,
B.
Fan
,
H.
Wang
,
X.
Li
,
R.
Zhang
,
T.
Hou
,
H.
Lu
,
H.
Xu
,
J.
Sun
, and
L.
Gao
, “
A comparative study on reactions of n-alkylamines with tungstic acids with various W–O octahedral layers: Novel evidence for the ‘dissolution–reorganization’ mechanism
,”
Mater. Chem. Phys.
125
,
838
(
2011
).
17.
M. F.
Daniel
,
B.
Desbat
,
J. C.
Lassegues
,
B.
Gerand
, and
M.
Figlarz
, “
Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates
,”
J. Solid State Chem.
67
,
235
(
1987
).
18.
R. M.
Silverstein
,
G. C.
Bassler
, and
T. C.
Morrill
,
Spectrometric Identification of Organic Compounds
, 5th ed. (
John Wiley & Sons, Inc.
,
New York
,
1991
).
19.
B.
Ingham
,
S. V.
Chong
, and
J. L.
Tallon
, “
Layered tungsten oxide-based organic–inorganic hybrid materials: An infrared and Raman study
,”
J. Phys. Chem. B
109
,
4936
(
2005
).
20.
B.
Ingham
,
Low-Dimensional Physics of Organic–Inorganic Multilayers
(
Victoria University of Wellington
,
2005
).
21.
O. Y.
Khyzhun
, “
XPS, XES and XAS studies of the electronic structure of tungsten oxides
,”
J. Alloys Compd.
305
,
1
(
2000
).
22.
Islah-u-din
,
S. V.
Chong
,
S. G.
Telfer
,
J.
Kennedy
,
G. B.
Jameson
,
M. R.
Waterland
, and
J. L.
Tallon
, “
Influence of doping on hybrid organic–inorganic WO3(4,4′-bipyridyl)0.5 materials
,”
J. Phys. Chem. C
116
,
3787
(
2012
).
23.
W.
Li
,
F.
Xia
,
J.
Qu
,
P.
Li
,
D.
Chen
,
Z.
Chen
,
Y.
Yu
,
Y.
Lu
,
R. A.
Caruso
, and
W.
Song
, “
Versatile inorganic-organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis
,”
Nano Res.
7
,
903
(
2014
).
24.
M.
Ue
, “
Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ‐butyrolactone
,”
J. Electrochem. Soc.
141
,
3336
(
1994
).
25.
H.
Banda
,
S.
Périé
,
B.
Daffos
,
P.-L.
Taberna
,
L.
Dubois
,
O.
Crosnier
,
P.
Simon
,
D.
Lee
,
G.
De Paëpe
, and
F.
Duclairoir
, “
Sparsely pillared graphene materials for high-performance supercapacitors: Improving ion transport and storage capacity
,”
ACS Nano
13
,
1443
(
2019
).
26.
S.
Malkhandi
,
B.
Yang
,
A. K.
Manohar
,
G. K. S.
Prakash
, and
S. R.
Narayanan
, “
Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes
,”
J. Am. Chem. Soc.
135
,
347
(
2013
).
27.
H. R.
Shanks
,
P. H.
Sidles
, and
G. C.
Danielson
, “
Electrical properties of the tungsten bronzes
,”
Adv. Chem.
39
,
237
245
(
1963
).
28.
E. V.
Miu
,
G.
Mpourmpakis
, and
J. R.
McKone
, “
Predicting the energetics of hydrogen intercalation in metal oxides using acid–base properties
,”
ACS Appl. Mater. Interfaces
12
,
44658
(
2020
).
29.
M. A.
Spencer
,
J.
Fortunato
, and
V.
Augustyn
(
2022
). “
Electrochemical proton insertion modulates the hydrogen evolution reaction on tungsten oxides
,” Zenodo. https://doi.org/10.1063/5.0082459.

Supplementary Material

You do not currently have access to this content.