We carried out transient absorption spectroscopy of thioflavin T (ThT) molecules in various solvents employing an asynchronous optical sampling (ASOPS) scheme with dual synchronized and frequency up-converted mode-lock lasers in the near UV (NUV) spectral region. We developed a pair of synchronized femtosecond lasers with tunable center wavelengths ranging from 380 to 430 nm and spectral bandwidths of 30 nm. As a proof-of-principle experiment, we measured interferometrically detected time and frequency-resolved pump–probe signals of ThT in various solvents to study the twisted intramolecular charge transfer process of photo-excited ThT molecules. Both single-color NUV-NUV and two-color NUV-near IR (NIR) pump–probe measurements reveal that the vibronic coupling strengths of two vibrational modes with frequencies of 214 and 526 cm−1 in the excited state of ThT are reduced when ThT is dissolved in a chlorine-containing solvent, e.g., chloroform. We confirm theoretically that these vibrational modes have relatively high electric dipole moments in the excited state. As a result, the intramolecular charge transfer process of ThT in chloroform, which is driven by the solvation process of surrounding polar solvent molecules, could occur less efficiently, which results in an increase in the fluorescence quantum yield. Here, we demonstrate that the NUV-NUV and NUV-NIR ASOPS-transient absorption could be useful techniques for studying ultrafast photochemical reactions in condensed phases.

1.
N. H.
Damrauer
,
G.
Cerullo
,
A.
Yeh
,
T. R.
Boussie
,
C. V.
Shank
, and
J. K.
McCusker
,
Science
275
,
54
(
1997
).
2.
M.
Chergui
,
Acc. Chem. Res.
48
,
801
(
2015
).
3.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
(
2005
).
5.
Y.-I.
Suzuki
,
T.
Fuji
,
T.
Horio
, and
T.
Suzuki
,
J. Chem. Phys.
132
,
174302
(
2010
).
6.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
7.
T.
Joo
,
Y.
Jia
,
J. Y.
Yu
,
M. J.
Lang
, and
G. R.
Fleming
,
J. Chem. Phys.
104
,
6089
(
1996
).
8.
E.
Lill
,
S.
Schneider
, and
F.
Dörr
,
Appl. Phys.
14
,
399
(
1977
).
9.
P. A.
Elzinga
,
R. J.
Kneisler
,
F. E.
Lytle
,
Y.
Jiang
,
G. B.
King
, and
N. M.
Laurendeau
,
Appl. Opt.
26
,
4303
(
1987
).
10.
G.
Sucha
,
M. E.
Fermann
,
D. J.
Harter
, and
M.
Hofer
,
IEEE J. Sel. Top. Quantum Electron.
2
,
605
(
1996
).
11.
I.
Coddington
,
N.
Newbury
, and
W.
Swann
,
Optica
3
,
414
(
2016
).
12.
J.
Kim
,
T. H.
Yoon
, and
M.
Cho
,
J. Phys. Chem. B
122
,
9775
(
2018
).
13.
M. A.
Dreger
and
J. K.
McLver
,
J. Opt. Soc. Am. B
7
,
776
(
1990
).
14.
P.
Pliszka
and
P. P.
Banerjee
,
J. Opt. Soc. Am. B
10
,
1810
(
1993
).
15.
H.
Liu
,
J.
Yao
, and
A.
Puri
,
Opt. Commun.
109
,
139
(
1994
).
16.
O.
Gobert
,
G.
Mennerat
,
R.
Maksimenka
,
N.
Fedorov
,
M.
Perdrix
,
D.
Guillaumet
,
C.
Ramond
,
J.
Habib
,
C.
Prigent
,
D.
Vernhet
,
T.
Oksenhendler
, and
M.
Comte
,
Appl. Opt.
53
,
2646
(
2014
).
17.
C.-Y.
Hu
,
H.-J.
He
,
B.-Q.
Chen
,
Z.-Y.
Wei
, and
Z.-Y.
Li
,
Appl. Phys.
122
,
243105
(
2017
).
19.
E. S.
Voropai
,
M. P.
Samtsov
,
K. N.
Kaplevskii
,
A. A.
Maskevich
,
V. I.
Stepuro
,
O. I.
Povarova
,
I. M.
Kuznetsova
,
K. K.
Turoverov
,
A. L.
Fink
, and
V. N.
Uverskii
,
J. Appl. Spectrosc.
70
,
868
(
2003
).
20.
A. A.
Maskevich
,
V. I.
Stsiapura
,
V. A.
Kuzmitsky
,
I. M.
Kuznetsova
,
O. I.
Povarova
,
V. N.
Uversky
, and
K. K.
Turoverov
,
J. Proteome Res.
6
,
1392
(
2007
).
21.
V. I.
Stsiapura
,
A. A.
Maskevich
,
S. A.
Tikhomirov
, and
O. V.
Buganov
,
J. Phys. Chem. A
114
,
8345
(
2010
).
22.
Y.
Erez
,
Y.-H.
Liu
,
N.
Amdursky
, and
D.
Huppert
,
J. Phys. Chem. A
115
,
8479
(
2011
).
23.
H.
Ren
,
B. P.
Fingerhut
, and
S.
Mukamel
,
J. Phys. Chem. A
117
,
6096
(
2013
).
24.
R.
Ghosh
and
D. K.
Palit
,
ChemPhysChem
15
,
4126
(
2014
).
25.
P.
Mukherjee
,
S.
Rafiq
, and
P.
Sen
,
J. Photochem. Photobiol., A
328
,
136
(
2016
).
26.
P.
Mukherjee
,
A.
Das
, and
P.
Sen
,
J. Photochem. Photobiol., A
348
,
287
(
2017
).
27.
J.
Kim
,
D. E.
Kim
, and
T.
Joo
,
J. Phys. Chem. A
122
,
1283
(
2018
).
28.
V. I.
Stsiapura
,
J. Comput. Chem.
41
,
1874
(
2020
).
29.
P.
Hanczyc
,
P.
Rajchel-Mieldzioć
,
B.
Feng
, and
P.
Fita
,
J. Phys. Chem. Lett.
12
,
5436
(
2021
).
30.
V. I.
Stsiapura
,
A. A.
Maskevich
,
V. A.
Kuzmitsky
,
K. K.
Turoverov
, and
I. M.
Kuznetsova
,
J. Phys. Chem. A
111
,
4829
(
2007
).
31.
J.
Kim
,
B.
Cho
,
T. H.
Yoon
, and
M.
Cho
,
J. Phys. Chem. Lett.
9
,
1866
(
2018
).
32.
J.
Kim
,
J.
Jeon
,
T. H.
Yoon
, and
M.
Cho
,
Nat. Commun.
11
,
6029
(
2020
).
33.
J.
Kim
,
T. H.
Yoon
, and
M.
Cho
,
J. Phys. Chem. Lett.
11
,
2864
(
2020
).
34.
A. M.
Rollins
and
J. A.
Izatt
,
Opt. Lett.
24
,
1484
(
1999
).
35.
G.
Lee
,
J.
Kim
,
S. Y.
Kim
,
D. E.
Kim
, and
T.
Joo
,
ChemPhysChem
18
,
670
(
2017
).
36.
F.
Emaury
,
A.
Diebold
,
C. J.
Saraceno
, and
U.
Keller
,
Optica
2
,
980
(
2015
).
37.
S.
Hädrich
,
M.
Krebs
,
A.
Hoffmann
,
A.
Klenke
,
J.
Rothhardt
,
J.
Limpert
, and
A.
Tünnermann
,
Light Sci. Appl.
4
,
e320
(
2015
).
38.
G.
Porat
,
C. M.
Heyl
,
S. B.
Schoun
,
C.
Benko
,
N.
Dörre
,
K. L.
Corwin
, and
J.
Ye
,
Nat. Photonics
12
,
387
(
2018
).
39.
40.
R.
Kameyama
,
S.
Takizawa
,
K.
Hiramatsu
, and
K.
Goda
,
ACS Photonics
8
,
975
(
2021
).

Supplementary Material

You do not currently have access to this content.