Due to the sheer size of chemical and materials space, high-throughput computational screening thereof will require the development of new computational methods that are accurate, efficient, and transferable. These methods need to be applicable to electron configurations beyond ground states. To this end, we have systematically studied the applicability of quantum alchemy predictions using a Taylor series expansion on quantum mechanics (QM) calculations for single atoms with different electronic structures arising from different net charges and electron spin multiplicities. We first compare QM method accuracy to experimental quantities, including first and second ionization energies, electron affinities, and spin multiplet energy gaps, for a baseline understanding of QM reference data. Next, we investigate the intrinsic accuracy of “manual” quantum alchemy. This method uses QM calculations involving nuclear charge perturbations of one atom's basis set to model another. We then discuss the reliability of quantum alchemy based on Taylor series approximations at different orders of truncation. Overall, we find that the errors from finite basis set treatments in quantum alchemy are significantly reduced when thermodynamic cycles are employed, which highlights a route to improve quantum alchemy in explorations of chemical space. This work establishes important technical aspects that impact the accuracy of quantum alchemy predictions using a Taylor series and provides a foundation for further quantum alchemy studies.

1.
D. B.
Kitchen
,
H.
Decornez
,
J. R.
Furr
, and
J.
Bajorath
, “
Docking and scoring in virtual screening for drug discovery: Methods and applications
,”
Nat. Rev. Drug Discovery
3
,
935
949
(
2004
).
2.
S. J. Y.
Macalino
,
V.
Gosu
,
S.
Hong
, and
S.
Choi
, “
Role of computer-aided drug design in modern drug discovery
,”
Arch. Pharmacal Res.
38
,
1686
1701
(
2015
).
3.
J. K.
Nørskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
, “
Towards the computational design of solid catalysts
,”
Nat. Chem.
1
,
37
46
(
2009
).
4.
Y. J.
Colón
and
R. Q.
Snurr
, “
High-throughput computational screening of metal–organic frameworks
,”
Chem. Soc. Rev.
43
,
5735
5749
(
2014
).
5.
A.
Jain
,
Y.
Shin
, and
K. A.
Persson
, “
Computational predictions of energy materials using density functional theory
,”
Nat. Rev. Mater.
1
,
15004
(
2016
).
6.
Q.
Wang
,
L.
Velasco
,
B.
Breitung
, and
V.
Presser
, “
High-entropy energy materials in the age of big data: A critical guide to next-generation synthesis and applications
,”
Adv. Energy Mater.
11
,
2102355
(
2021
).
7.
J. A.
Keith
,
V.
Vassilev-Galindo
,
B.
Cheng
,
S.
Chmiela
,
M.
Gastegger
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Combining machine learning and computational chemistry for predictive insights into chemical systems
,”
Chem. Rev.
121
,
9816
9872
(
2021
).
8.
Q.
Cui
,
M.
Elstner
,
E.
Kaxiras
,
T.
Frauenheim
, and
M.
Karplus
, “
A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method
,”
J. Phys. Chem. B
105
,
569
585
(
2001
).
9.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
, “
DFTB+, a sparse matrix-based implementation of the DFTB method
,”
J. Phys. Chem. A
111
,
5678
5684
(
2007
).
10.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
, “
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
,”
J. Chem. Theory Comput.
7
,
931
948
(
2011
).
11.
D. J.
Schmidt
,
W.
Chen
,
C.
Wolverton
, and
W. F.
Schneider
, “
Performance of cluster expansions of coverage-dependent adsorption of atomic oxygen on Pt(111)
,”
J. Chem. Theory Comput.
8
,
264
273
(
2012
).
12.
T.
Rehman
,
M.
Jaipal
, and
A.
Chatterjee
, “
A cluster expansion model for predicting activation barrier of atomic processes
,”
J. Comput. Phys.
243
,
244
259
(
2013
).
13.
S.
Verma
,
T.
Rehman
, and
A.
Chatterjee
, “
A cluster expansion model for rate constants of surface diffusion processes on Ag, Al, Cu, Ni, Pd and Pt(100) surfaces
,”
Surf. Sci.
613
,
114
125
(
2013
).
14.
L. M.
Herder
,
J. M.
Bray
, and
W. F.
Schneider
, “
Comparison of cluster expansion fitting algorithms for interactions at surfaces
,”
Surf. Sci.
640
,
104
111
(
2015
).
15.
A.
Bajpai
,
K.
Frey
, and
W. F.
Schneider
, “
Binary approach to ternary cluster expansions: NO–O–vacancy system on Pt(111)
,”
J. Phys. Chem. C
121
,
7344
7354
(
2017
).
16.
A. P.
Sutton
and
J.
Chen
, “
Long-range Finnis–Sinclair potentials
,”
Philos. Mag. Lett.
61
,
139
146
(
1990
).
17.
J.
Yu
,
S. B.
Sinnott
, and
S. R.
Phillpot
, “
Charge optimized many-body potential for the Si/SiO2 system
,”
Phys. Rev. B
75
,
085311
(
2007
).
18.
T. P.
Senftle
,
S.
Hong
,
M. M.
Islam
,
S. B.
Kylasa
,
Y.
Zheng
,
Y. K.
Shin
,
C.
Junkermeier
,
R.
Engel-Herbert
,
M. J.
Janik
,
H. M.
Aktulga
,
T.
Verstraelen
,
A.
Grama
, and
A. C. T.
van Duin
, “
The ReaxFF reactive force-field: Development, applications and future directions
,”
npj Comput. Mater.
2
,
15011
(
2016
).
19.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
20.
O. A.
von Lilienfeld
, “
Accurate ab initio energy gradients in chemical compound space
,”
J. Chem. Phys.
131
,
164102
(
2009
).
21.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Alchemical perturbation density functional theory
,”
Phys. Rev. Res.
2
,
023220
(
2020
).
22.
G. F.
von Rudorff
, “
Arbitrarily accurate quantum alchemy
,”
J. Chem. Phys.
155
,
224103
(
2021
).
23.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Atoms in molecules from alchemical perturbation density functional theory
,”
J. Phys. Chem. B
123
,
10073
10082
(
2019
).
24.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Rapid and accurate molecular deprotonation energies from quantum alchemy
,”
Phys. Chem. Chem. Phys.
22
,
10519
10525
(
2020
).
25.
M.
to Baben
,
J. O.
Achenbach
, and
O. A.
von Lilienfeld
, “
Guiding ab initio calculations by alchemical derivatives
,”
J. Chem. Phys.
144
,
104103
(
2016
).
26.
A.
Solovyeva
and
O. A.
von Lilienfeld
, “
Alchemical screening of ionic crystals
,”
Phys. Chem. Chem. Phys.
18
,
31078
31091
(
2016
).
27.
D.
Sheppard
,
G.
Henkelman
, and
O. A.
von Lilienfeld
, “
Alchemical derivatives of reaction energetics
,”
J. Chem. Phys.
133
,
084104
(
2010
).
28.
R.
Balawender
,
M. A.
Welearegay
,
M.
Lesiuk
,
F.
De Proft
, and
P.
Geerlings
, “
Exploring chemical space with the alchemical derivatives
,”
J. Chem. Theory Comput.
9
,
5327
5340
(
2013
).
29.
K.
Saravanan
,
J. R.
Kitchin
,
O. A.
von Lilienfeld
, and
J. A.
Keith
, “
Alchemical predictions for computational catalysis: Potential and limitations
,”
J. Phys. Chem. Lett.
8
,
5002
5007
(
2017
).
30.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: BN-simultaneous substitution patterns in C60
,”
J. Chem. Theory Comput.
14
,
1154
1168
(
2018
).
31.
C. D.
Griego
,
K.
Saravanan
, and
J. A.
Keith
, “
Benchmarking computational alchemy for carbide, nitride, and oxide catalysts
,”
Adv. Theory Simul.
2
,
1800142
(
2019
).
32.
C. D.
Griego
,
J. R.
Kitchin
, and
J. A.
Keith
, “
Acceleration of catalyst discovery with easy, fast, and reproducible computational alchemy
,”
Int. J. Quantum Chem.
121
,
e26380
(
2020
).
33.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
,
C.
Van Alsenoy
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: Alchemical transformations of H through Ar and their ions as a proof of concept
,”
Phys. Chem. Chem. Phys.
21
,
23865
23879
(
2019
).
34.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
et al., “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
35.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
 et al., “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
36.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
,
1664
1671
(
2015
).
37.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, Jr., and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg
,”
Theor. Chem. Acc.
128
,
69
82
(
2011
).
38.
D. E.
Woon
Jr., and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
39.
D. E.
Woon
Jr., and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
40.
R. A.
Kendall
,
T. H.
Dunning
, Jr., and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
41.
T. H.
Dunning
, Jr., “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
42.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New Basis Set Exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
43.
D.
Feller
, “
The role of databases in support of computational chemistry calculations
,”
J. Comput. Chem.
17
,
1571
1586
(
1996
).
44.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis Set Exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
1052
(
2007
).
45.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
,
1559
2259
(
2005
).
46.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
, in
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC Press
,
2017
), Vols. 2016–2017.
47.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.8) (Online), available at https://physics.nist.gov/asd, October 20, 2021, National Institute of Standards and Technology, Gaithersburg, MD,
2020
.
48.
G.
Domenichini
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
Effects of perturbation order and basis set on alchemical predictions
,”
J. Chem. Phys.
153
,
144118
(
2020
).
49.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
50.
M.
Baer
, maroba/findiff: A Python package for finite difference numerical derivatives and partial differential equations in any number of dimensions.
51.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
4585
(
1995
).
52.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
, “
Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
,”
J. Chem. Phys.
117
,
10548
10560
(
2002
).
53.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).

Supplementary Material

You do not currently have access to this content.