Carbodiimide-mediated coupling chemistry was used to synthesize heterostructures of CdSe and CdTe quantum dots (QDs) with varying ratios of electron-donating CdTe QDs and electron-accepting CdSe QDs. Heterostructures were assembled via the formation of amide bonds between the terminal functional groups of CdTe-adsorbed 4-aminothiophenol (4-ATP) ligands and CdSe-adsorbed N-hydroxysuccinimide (NHS) ligands. The number of charge acceptors on the surfaces of QDs can greatly influence the rate constant of excited-state charge transfer with QDs capable of accommodating far more acceptors than molecular chromophores. We report here on excited-state electron transfer within heterostructure-forming mixtures of 4-ATP-capped CdTe and NHS-capped CdSe QDs with varying molar ratios of CdTe to CdSe. Photophysical properties and charge transfer were characterized using UV–vis absorption, steady-state emission, and time-resolved emission spectroscopy. As the relative concentration of electron-accepting CdSe QDs within mixtures of 4-ATP-capped CdTe and NHS-capped CdSe QDs increased, the rate and efficiency of electron transfer increased by 100-fold and 7.4-fold, respectively, as evidenced by dynamic quenching of band-edge emission from CdTe QDs. In contrast, for non-interacting mixtures of thiophenol capped CdTe QDs and NHS-capped CdSe QDs, which served as control samples, photophysical properties of the constituent QDs were unperturbed and excited-state charge transfer between the QDs was negligible. Our results reveal that carbodiimide-mediated coupling chemistry can be used to control the relative number of donor and acceptor QDs within heterostructures, which, in turn, enables fine-tuning of charge-transfer dynamics and yields. These amide-bridged dual-QD heterostructures are, thus, intriguing for light harvesting, charge transfer, and photocatalysis.

1.
Z.
Pan
,
H.
Rao
,
I.
Mora-Seró
,
J.
Bisquert
, and
X.
Zhong
,
Chem. Soc. Rev.
47
,
7659
(
2018
).
2.
L.
Jin
,
H.
Zhao
,
Z. M.
Wang
, and
F.
Rosei
,
Adv. Energy Mater.
11
,
2003233
(
2021
).
3.
J.
Tian
and
G.
Cao
,
Nano Rev.
4
,
22578
(
2013
).
4.
M. A.
Boles
,
D.
Ling
,
T.
Hyeon
, and
D. V.
Talapin
,
Nat. Mater.
15
,
141
(
2016
).
5.
P. R.
Brown
,
D.
Kim
,
R. R.
Lunt
,
N.
Zhao
,
M. G.
Bawendi
,
J. C.
Grossman
, and
V.
Bulović
,
ACS Nano
8
,
5863
(
2014
).
6.
A. J.
Nozik
,
Chem. Phys. Lett.
457
,
3
(
2008
).
7.
L.
Zheng
,
F.
Teng
,
X.
Ye
,
H.
Zheng
, and
X.
Fang
,
Adv. Energy Mater.
10
,
1902355
(
2020
).
8.
E. A.
Weiss
,
ACS Energy Lett.
2
,
1005
(
2017
).
9.
Y.-J.
Yuan
,
D.
Chen
,
Z.-T.
Yu
, and
Z.-G.
Zou
,
J. Mater. Chem. A
6
,
11606
(
2018
).
10.
K. E.
Knowles
,
M. D.
Peterson
,
M. R.
McPhail
, and
E. A.
Weiss
,
J. Phys. Chem. C
117
,
10229
(
2013
).
11.
J. H.
Olshansky
,
T. X.
Ding
,
Y. V.
Lee
,
S. R.
Leone
, and
A. P.
Alivisatos
,
J. Am. Chem. Soc.
137
,
15567
(
2015
).
12.
R. S.
Selinsky
,
Q.
Ding
,
M. S.
Faber
,
J. C.
Wright
, and
S.
Jin
,
Chem. Soc. Rev.
42
,
2963
(
2013
).
13.
A.
Dalui
,
A.
Chakraborty
,
U.
Thupakula
,
A. H.
Khan
,
S.
Sengupta
,
B.
Satpati
,
D. D.
Sarma
,
I.
Dasgupta
, and
S.
Acharya
,
Phys. Chem. C
120
,
10118
(
2016
).
14.
G. K.
Grandhi
and
R.
Viswanatha
,
J. Phys. Chem. Lett.
8
,
2043
(
2017
).
15.
P. D.
Cozzoli
,
T.
Pellegrino
, and
L.
Manna
,
Chem. Soc. Rev.
35
,
1195
(
2006
).
16.
X.
Xu
,
S.
Stöttinger
,
G.
Battagliarin
,
G.
Hinze
,
E.
Mugnaioli
,
C.
Li
,
K.
Müllen
, and
T.
Basché
,
J. Am. Chem. Soc.
133
,
18062
(
2011
).
17.
R.
Burke
,
K. L.
Bren
, and
T. D.
Krauss
,
J. Chem. Phys.
154
,
030901
(
2021
).
18.
C. R.
McGranahan
,
G. E.
Wolfe
,
A.
Falca
, and
D. F.
Watson
,
ACS Appl. Mater. Interfaces
13
,
30980
(
2021
).
19.
D. G.
Sellers
,
A. A.
Button
,
J. N.
Nasca
,
G. E.
Wolfe
,
S.
Chauhan
, and
D. F.
Watson
,
J. Phys. Chem. C
119
,
27737
(
2015
).
20.
A.
Attanzio
,
A.
Sapelkin
,
F.
Gesuele
,
A.
van der Zande
,
W. P.
Gillin
,
M.
Zheng
, and
M.
Palma
,
Small
13
,
1603042
(
2017
).
21.
J.
Duan
,
H.
Zhang
,
Q.
Tang
,
B.
He
, and
L.
Yu
,
J. Mater. Chem. A
3
,
17497
(
2015
).
22.
R.
Ghasemzadeh
,
M. H.
Armanmehr
,
M.
Abedi
,
D. S.
Fateh
, and
Z.
Bahreini
,
J. Mol. Struct.
1151
,
106
(
2018
).
23.
K.
Tvrdy
,
P. A.
Frantsuzov
, and
P. V.
Kamat
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
29
(
2011
).
24.
T. X.
Ding
,
J. H.
Olshansky
,
S. R.
Leone
, and
A. P.
Alivisatos
,
J. Am. Chem. Soc.
137
,
2021
(
2015
).
25.
A. J.
Morris-Cohen
,
M. T.
Frederick
,
L. C.
Cass
, and
E. A.
Weiss
,
J. Am. Chem. Soc.
133
,
10146
(
2011
).
26.
H.
Zhu
,
Y.
Yang
,
K.
Hyeon-Deuk
,
M.
Califano
,
N.
Song
,
Y.
Wang
,
W.
Zhang
,
O. V.
Prezhdo
, and
T.
Lian
,
Nano Lett.
14
,
1263
(
2014
).
27.
K. E.
Pelcher
,
C. C.
Milleville
,
L.
Wangoh
,
S.
Chauhan
,
M. R.
Crawley
,
P. M.
Marley
,
L. F. J.
Piper
,
D. F.
Watson
, and
S.
Banerjee
,
Chem. Mater.
27
,
2468
(
2015
).
28.
S.
Khene
and
T.
Nyokong
,
Microchem. J.
99
,
478
(
2011
).
29.
J.
Wang
,
Y.
Long
,
Y.
Zhang
,
X.
Zhong
, and
L.
Zhu
,
ChemPhysChem
10
,
680
(
2009
).
30.
R. C.
Page
,
D.
Espinobarro‐Velazquez
,
M. A.
Leontiadou
,
C.
Smith
,
E. A.
Lewis
,
S. J.
Haigh
,
C.
Li
,
H.
Radtke
,
A.
Pengpad
,
F.
Bondino
,
E.
Magnano
,
I.
Pis
,
W. R.
Flavell
,
P.
O'Brien
, and
D. J.
Binks
,
Small
11
,
1548
(
2015
).
31.
B. J.
Landi
,
C. M.
Evans
,
J. J.
Worman
,
S. L.
Castro
,
S. G.
Bailey
, and
R. P.
Raffaelle
,
Mater. Lett.
60
,
3502
(
2006
).
32.
W. W.
Yu
,
L.
Qu
,
W.
Guo
, and
X.
Peng
,
Chem. Mater.
15
,
2854
(
2003
).
33.
Y.
Ye
,
X.
Wang
,
S.
Ye
,
Y.
Xu
,
Z.
Feng
, and
C.
Li
,
J. Phys. Chem. C
121
,
17112
(
2017
).
34.
M.
Abdellah
,
K. J.
Karki
,
N.
Lenngren
,
K.
Zheng
,
T.
Pascher
,
A.
Yartsev
, and
T.
Pullerits
,
J. Phys. Chem. C
118
,
21682
(
2014
).
35.
S.
Chauhan
and
D. F.
Watson
,
Phys. Chem. Chem. Phys.
18
,
20466
(
2016
).
36.
A.
Kongkanand
,
K.
Tvrdy
,
K.
Takechi
,
M.
Kuno
, and
P. V.
Kamat
,
J. Am. Chem. Soc.
130
,
4007
(
2008
).
37.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
, 3rd ed. (
Springer
,
New York
,
2006
).
38.
G.
Zatryb
and
M. M.
Klak
,
J. Phys.: Condens. Matter
32
,
415902
(
2020
).
39.
J. H.
Bang
and
P. V.
Kamat
,
ACS Nano
5
,
9421
(
2011
).

Supplementary Material

You do not currently have access to this content.