The optoelectronic properties of quantum confined semiconductor nanocrystals depend critically on the band edge electron and hole levels and their exciton fine structures. Transient absorption (TA) spectroscopy has been widely used to probe the dynamics of photogenerated electrons, holes, and excitons in these materials through their state filling induced bleach of the band edge exciton transition. Such effects, in principle, reflect the band edge fine structures and are well understood for the conduction band electrons. However, the valence band hole state filling signals remain poorly understood due to the complexity of the valence band level structure and the presence of fast hole trapping in many materials. Herein, we report a study of the valence band hole state filling effect by comparing the TA spectra of CdSe quantum dots (QDs) with different degrees of hole trapping and by selective removal of the conduction band electrons to adsorbed methyl viologen molecules. We observe that in CdSe/CdS core/shell QDs with a high photoluminescence quantum yield of 81%, the valence band hole contributes to 22% ± 1% of the exciton bleach, while a negligible hole state filling signal is observed in CdSe core only QDs with a photoluminescence quantum yield of 17%. This hole state filling effect can be explained by a simplified valence band edge hole model that contains two sets of twofold degenerate hole levels that are responsible for the higher energy bright exciton and lower energy dark exciton states, respectively. Our result clarifies the TA spectral features of the valence band holes and provides insights into the nature of single hole states in CdSe-based QDs.

1.
A. J.
Nozik
,
Physica E
14
(
1–2
),
115
120
(
2002
).
2.
E. H.
Sargent
,
Nat. Photonics
6
(
3
),
133
135
(
2012
).
3.
P. V.
Kamat
,
K.
Tvrdy
,
D. R.
Baker
, and
E. J.
Radich
,
Chem. Rev.
110
(
11
),
6664
6688
(
2010
).
4.
X.
Dai
,
Z.
Zhang
,
Y.
Jin
,
Y.
Niu
,
H.
Cao
,
X.
Liang
,
L.
Chen
,
J.
Wang
, and
X.
Peng
,
Nature
515
(
7525
),
96
99
(
2014
).
5.
L.
Sun
,
J. J.
Choi
,
D.
Stachnik
,
A. C.
Bartnik
,
B.-R.
Hyun
,
G. G.
Malliaras
,
T.
Hanrath
, and
F. W.
Wise
,
Nat. Nanotechnol.
7
(
6
),
369
373
(
2012
).
6.
O. V.
Kozlov
,
Y.-S.
Park
,
J.
Roh
,
I.
Fedin
,
T.
Nakotte
, and
V. I.
Klimov
,
Science
365
(
6454
),
672
675
(
2019
).
7.
V. I.
Klimov
,
A. A.
Mikhailovsky
,
S.
Xu
,
A.
Malko
,
J. A.
Hollingsworth
,
C. A.
Leatherdale
,
H.-J.
Eisler
, and
M. G.
Bawendi
,
Science
290
(
5490
),
314
317
(
2000
).
8.
D. R.
Needell
,
O.
Ilic
,
C. R.
Bukowsky
,
Z.
Nett
,
L.
Xu
,
J.
He
,
H.
Bauser
,
B. G.
Lee
,
J. F.
Geisz
,
R. G.
Nuzzo
,
A. P.
Alivisatos
, and
H. A.
Atwater
,
IEEE J. Photovoltaics
8
(
6
),
1560
1567
(
2018
).
9.
H.
Li
,
K.
Wu
,
J.
Lim
,
H.-J.
Song
, and
V. I.
Klimov
,
Nat. Energy
1
(
12
),
16157
(
2016
).
10.
K.
Wu
,
H.
Li
, and
V. I.
Klimov
,
Nat. Photonics
12
(
2
),
105
110
(
2018
).
11.
J. M.
Pietryga
,
Y.-S.
Park
,
J.
Lim
,
A. F.
Fidler
,
W. K.
Bae
,
S.
Brovelli
, and
V. I.
Klimov
,
Chem. Rev.
116
(
18
),
10513
10622
(
2016
).
12.
A. L.
Efros
and
M.
Rosen
,
Annu. Rev. Mater. Sci.
30
(
1
),
475
521
(
2000
).
13.
V. I.
Klimov
,
Annu. Rev. Phys. Chem.
58
,
635
673
(
2007
).
14.
W. W.
Yu
,
L.
Qu
,
W.
Guo
, and
X.
Peng
,
Chem. Mater.
15
(
14
),
2854
2860
(
2003
).
15.
A. L.
Efros
,
M.
Rosen
,
M.
Kuno
,
M.
Nirmal
,
D. J.
Norris
, and
M.
Bawendi
,
Phys. Rev. B
54
(
7
),
4843
4856
(
1996
).
16.
P. C.
Sercel
and
A. L.
Efros
,
Nano Lett.
18
(
7
),
4061
4068
(
2018
).
17.
M.
Korkusinski
,
O.
Voznyy
, and
P.
Hawrylak
,
Phys. Rev. B
82
(
24
),
245304
(
2010
).
18.
L.
Wang
,
Z.
Chen
,
G.
Liang
,
Y.
Li
,
R.
Lai
,
T.
Ding
, and
K.
Wu
,
Nat. Commun.
10
(
1
),
4532
(
2019
).
19.
Y.
Gao
and
X.
Peng
,
J. Am. Chem. Soc.
137
(
12
),
4230
4235
(
2015
).
20.
H.
Qin
,
Y.
Niu
,
R.
Meng
,
X.
Lin
,
R.
Lai
,
W.
Fang
, and
X.
Peng
,
J. Am. Chem. Soc.
136
(
1
),
179
187
(
2014
).
21.
K.
Wu
,
J.
Lim
, and
V. I.
Klimov
,
ACS Nano
11
(
8
),
8437
8447
(
2017
).
22.
K.
Wu
,
Y.-S.
Park
,
J.
Lim
, and
V. I.
Klimov
,
Nat. Nanotechnol.
12
(
12
),
1140
1147
(
2017
).
23.
V. I.
Klimov
,
A. A.
Mikhailovsky
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
,
Science
287
(
5455
),
1011
1013
(
2000
).
24.
H.
Zhu
,
Y.
Yang
,
K.
Wu
, and
T.
Lian
,
Annu. Rev. Phys. Chem.
67
,
259
281
(
2016
).
25.
H.
Zhu
,
N.
Song
,
W.
Rodríguez-Córdoba
, and
T.
Lian
,
J. Am. Chem. Soc.
134
(
9
),
4250
4257
(
2012
).
26.
H.
Zhu
,
Y.
Yang
,
K.
Hyeon-Deuk
,
M.
Califano
,
N.
Song
,
Y.
Wang
,
W.
Zhang
,
O. V.
Prezhdo
, and
T.
Lian
,
Nano Lett.
14
(
3
),
1263
1269
(
2014
).
27.
J.
Huang
,
Z.
Huang
,
S.
Jin
, and
T.
Lian
,
J. Phys. Chem. C
112
(
49
),
19734
19738
(
2008
).
28.
J.
Huang
,
D.
Stockwell
,
Z.
Huang
,
D. L.
Mohler
, and
T.
Lian
,
J. Am. Chem. Soc.
130
(
17
),
5632
(
2008
).
29.
A.
Boulesbaa
,
Z.
Huang
,
D.
Wu
, and
T.
Lian
,
J. Phys. Chem. C
114
(
2
),
962
969
(
2010
).
30.
J.
Huang
,
Z.
Huang
,
Y.
Yang
,
H.
Zhu
, and
T.
Lian
,
J. Am. Chem. Soc.
132
(
13
),
4858
4864
(
2010
).
31.
V. I.
Klimov
and
D. W.
McBranch
,
Phys. Rev. Lett.
80
(
18
),
4028
4031
(
1998
).
32.
V. I.
Klimov
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
,
Phys. Rev. B
60
(
19
),
13740
13749
(
1999
).
33.
D. P.
Morgan
and
D. F.
Kelley
,
J. Phys. Chem. C
124
(
15
),
8448
8455
(
2020
).
34.
J.
Dana
,
O.
Haggag
,
M.
Mor
,
J.
Dehnel
,
E.
Liftschitz
, and
S.
Ruhman
,
Nanoscale
13
,
1982
(
2021
).
35.
A.
Boulesbaa
,
A.
Issac
,
D.
Stockwell
,
Z.
Huang
,
J.
Huang
,
J.
Guo
, and
T.
Lian
,
J. Am. Chem. Soc.
129
(
49
),
15132
(
2007
).
36.
H.
Zhu
,
N.
Song
, and
T.
Lian
,
J. Am. Chem. Soc.
133
(
22
),
8762
8771
(
2011
).
37.
K.
Wu
,
N.
Song
,
Z.
Liu
,
H.
Zhu
,
W.
Rodríguez-Córdoba
, and
T.
Lian
,
J. Phys. Chem. A
117
(
32
),
7561
7570
(
2013
).
38.
W.
Yang
,
Y.
Yang
,
A. L.
Kaledin
,
S.
He
,
T.
Jin
,
J. R.
McBride
, and
T.
Lian
,
Chem. Sci.
11
(
22
),
5779
5789
(
2020
).
39.
K.
Wu
,
Z.
Liu
,
H.
Zhu
, and
T.
Lian
,
J. Phys. Chem. A
117
(
29
),
6362
6372
(
2013
).
40.
K.
Wu
,
H.
Zhu
,
Z.
Liu
,
W.
Rodríguez-Córdoba
, and
T.
Lian
,
J. Am. Chem. Soc.
134
(
25
),
10337
10340
(
2012
).
41.
H.
Zhu
and
T.
Lian
,
J. Am. Chem. Soc.
134
(
27
),
11289
11297
(
2012
).
42.
K.
Wu
,
Y.
Du
,
H.
Tang
,
Z.
Chen
, and
T.
Lian
,
J. Am. Chem. Soc.
137
(
32
),
10224
10230
(
2015
).
43.
K.
Wu
,
J.
Chen
,
J. R.
McBride
, and
T.
Lian
,
Science
349
(
6248
),
632
635
(
2015
).
44.
K.
Wu
,
Q.
Li
,
Y.
Du
,
Z.
Chen
, and
T.
Lian
,
Chem. Sci.
6
(
2
),
1049
1054
(
2015
).
45.
Q.
Li
,
F.
Zhao
,
C.
Qu
,
Q.
Shang
,
Z.
Xu
,
L.
Yu
,
J. R.
McBride
, and
T.
Lian
,
J. Am. Chem. Soc.
140
(
37
),
11726
11734
(
2018
).
46.
Q.
Li
,
S.
He
, and
T.
Lian
,
Nano Lett.
20
,
6162
(
2020
).
47.
Y.
Yang
,
W.
Rodríguez-Córdoba
, and
T.
Lian
,
J. Am. Chem. Soc.
133
(
24
),
9246
9249
(
2011
).
48.
Y.
Yang
,
W.
Rodríguez-Córdoba
, and
T.
Lian
,
Nano Lett.
12
(
8
),
4235
4241
(
2012
).
49.
Y.
Yang
,
W.
Rodríguez-Córdoba
,
X.
Xiang
, and
T.
Lian
,
Nano Lett.
12
(
1
),
303
309
(
2012
).
50.
I.
Kang
and
F. W.
Wise
,
J. Opt. Soc. Am. B
14
(
7
),
1632
(
1997
).
51.
F. W.
Wise
,
Acc. Chem. Res.
33
(
11
),
773
780
(
2000
).
52.
Q.
Shang
,
A. L.
Kaledin
,
Q.
Li
, and
T.
Lian
,
J. Chem. Phys.
151
(
7
),
074705
(
2019
).
53.
K.
Wu
,
G.
Liang
,
Q.
Shang
,
Y.
Ren
,
D.
Kong
, and
T.
Lian
,
J. Am. Chem. Soc.
137
(
40
),
12792
12795
(
2015
).
54.
X.
Luo
,
G.
Liang
,
Y.
Han
,
Y.
Li
,
T.
Ding
,
S.
He
,
X.
Liu
, and
K.
Wu
,
J. Am. Chem. Soc.
142
(
25
),
11270
11278
(
2020
).
55.
T.
Labrador
and
G.
Dukovic
,
J. Phys. Chem. C
124
(
15
),
8439
8447
(
2020
).
56.
K. E.
Knowles
,
E. A.
McArthur
, and
E. A.
Weiss
,
ACS Nano
5
(
3
),
2026
2035
(
2011
).
57.
V. I.
Klimov
,
C. J.
Schwarz
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
,
Phys. Rev. B
60
(
4
),
R2177
R2180
(
1999
).
58.
G.
Grimaldi
,
J.
Geuchies
,
W.
van der Stam
,
I.
Du Fosse
,
B.
Brynjarsson
,
N.
Kirkwood
,
S.
Kinge
,
L. D. A.
Siebbeles
, and
A. J.
Houtepen
,
Nano Lett.
19
,
3002
(
2019
).
59.
D. J.
Norris
,
A. L.
Efros
,
M.
Rosen
, and
M. G.
Bawendi
,
Phys. Rev. B: Condens. Matter
53
(
24
),
16347
16354
(
1996
).
60.
M.
Nirmal
,
D. J.
Norris
,
M.
Kuno
,
M. G.
Bawendi
,
A. L.
Efros
, and
M.
Rosen
,
Phys. Rev. Lett.
75
(
20
),
3728
3731
(
1995
).
61.
M.
Kuno
,
J. K.
Lee
,
B. O.
Dabbousi
,
F. V.
Mikulec
, and
M. G.
Bawendi
,
J. Chem. Phys.
106
(
23
),
9869
9882
(
1997
).
62.
C.
de Mello Donegá
,
M.
Bode
, and
A.
Meijerink
,
Phys. Rev. B
74
(
8
),
085320
(
2006
).
63.
E.
Cassette
,
S.
Pedetti
,
B.
Mahler
,
S.
Ithurria
,
B.
Dubertret
, and
G. D.
Scholes
,
Phys. Chem. Chem. Phys.
19
(
12
),
8373
8379
(
2017
).
64.
D. A.
Hanifi
,
N. D.
Bronstein
,
B. A.
Koscher
,
Z.
Nett
,
J. K.
Swabeck
,
K.
Takano
,
A. M.
Schwartzberg
,
L.
Maserati
,
K.
Vandewal
,
Y.
van de Burgt
,
A.
Salleo
, and
A. P.
Alivisatos
,
Science
363
(
6432
),
1199
1202
(
2019
).
65.
L. E.
Brus
,
J. Chem. Phys.
79
(
11
),
5566
5571
(
1983
).
66.
L. E.
Brus
,
J. Chem. Phys.
80
(
9
),
4403
4409
(
1984
).
67.
Q.
Li
,
K.
Wu
,
J.
Chen
,
Z.
Chen
,
J. R.
McBride
, and
T.
Lian
,
ACS Nano
10
(
3
),
3843
3851
(
2016
).
68.
H.
Zhu
,
N.
Song
, and
T.
Lian
,
J. Am. Chem. Soc.
132
(
42
),
15038
15045
(
2010
).
69.
P.
Zeng
,
N.
Kirkwood
,
P.
Mulvaney
,
K.
Boldt
, and
T. A.
Smith
,
Nanoscale
8
(
19
),
10380
10387
(
2016
).
70.
H.
Zhu
,
N.
Song
,
H.
Lv
,
C. L.
Hill
, and
T.
Lian
,
J. Am. Chem. Soc.
134
(
28
),
11701
11708
(
2012
).
71.
D. J.
Norris
,
A.
Sacra
,
C. B.
Murray
, and
M. G.
Bawendi
,
Phys. Rev. Lett.
72
(
16
),
2612
2615
(
1994
).
72.
Y.
Wang
,
A.
Suna
,
J.
McHugh
,
E. F.
Hilinski
,
P. A.
Lucas
, and
R. D.
Johnson
,
J. Chem. Phys.
92
(
11
),
6927
6939
(
1990
).
73.
Y.-S.
Park
,
J.
Lim
, and
V. I.
Klimov
,
Nat. Mater.
18
(
3
),
249
255
(
2019
).
74.
A. I.
Ekimov
,
I. A.
Kudryavtsev
,
A. L.
Efros
,
T. V.
Yazeva
,
F.
Hache
,
M. C.
Schanne-Klein
,
A. V.
Rodina
,
D.
Ricard
, and
C.
Flytzanis
,
J. Opt. Soc. Am. B
10
(
1
),
100
(
1993
).
75.
K.
Leung
,
S.
Pokrant
, and
K. B.
Whaley
,
Phys. Rev. B
57
(
19
),
12291
12301
(
1998
).
76.
O.
Labeau
,
P.
Tamarat
, and
B.
Lounis
,
Phys. Rev. Lett.
90
(
25
),
257404
(
2003
).
77.
A.
Shabaev
,
A. V.
Rodina
, and
A. L.
Efros
,
Phys. Rev. B
86
(
20
),
205311
(
2012
).

Supplementary Material

You do not currently have access to this content.