The continuous search for metamaterials with special properties, suitable for new technological applications, is presently being driven by a preceding theoretical development, which took place after the introduction of new physical entities, anapole and a family of toroidal multipoles, having a border in common with those considered in the more familiar electric and magnetic multipole expansions. The related concept of toroidization, i.e., toroidal moment per unit volume, has been advocated in analogy to electric polarization and magnetization operated by electromagnetic fields and should be considered on the same footing regarding its relevance and practicality for understanding certain properties, e.g., ferrotoroidicity in condensed matter physics, and for rationalizing the behavior of charge-current distributions that neither radiate nor interact with external fields in classical and quantum electrodynamics. Toroidizability, i.e., the ability of sustaining toroidal moments, can also be defined by an analogy with electric polarizability and magnetizability. The present study shows that such a property is general and characterizes atoms and molecules and that the optical electric field of a light beam induces an oscillating anapole moment, i.e., the superposition of toroidal moment with an electric dipole moment. However, values of anapole polarizabilities induced by monochromatic light, estimated by time-dependent perturbation theory for rare gas atoms and a few molecules, are quite small and possibly hard to detect experimentally.

1.
Y. B.
Zel’dovich
,
Zh. Eksp. Teor. Fiz.
33
,
1531
(
1957
)
Y. B.
Zel’dovich
[
Sov. Phys. JETP
6
,
1184
(
1958
)], the author acknowledges analogous results obtained by V. G. Vaks.
2.

The surface of a torus is generated by the revolution of a circumference rotating about the symmetry axis. The poloidal currents follow small circular rings around and inside this surface.

3.
V. M.
Dubovik
and
L. A.
Tosunyan
,
Sov. J. Part. Nucl.
14
,
504
(
1983
).
4.
A. J.
Devaney
and
E.
Wolf
,
Phys. Rev. D
8
,
1044
(
1973
).
5.
G. N.
Afanasev
,
M.
Nelhiebel
, and
Y. P.
Stepanovsky
,
Phys. Scr.
54
,
417
(
1996
).
6.
G. N.
Afanasiev
and
Y. P.
Stepanovsky
,
J. Phys. A: Math. Gen.
28
,
4565
(
1995
).
7.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
8.
V. G.
Veselago
,
Sov. Phys. Usp.
10
,
509
(
1968
).
9.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
,
Science
305
,
788
(
2004
).
10.
K.
Marinov
,
A. D.
Boardman
,
V. A.
Fedotov
, and
N.
Zheludev
,
New J. Phys.
9
,
324
(
2007
).
11.
A.
Popov
,
S.
Myslivets
,
V.
Slabko
,
V.
Tkachenko
, and
T.
George
,
Photonics
5
,
8
(
2018
).
12.
J.
Wätzel
and
J.
Berakdar
,
Adv. Quantum Technol.
2
,
1800096
(
2019
).
13.
A.
Flórez
,
A.
Gurrola
,
W.
Johns
,
J.
Maruri
,
P.
Sheldon
,
K.
Sinha
, and
S. R.
Starko
,
Phys. Rev. D
100
,
016017
(
2019
).
14.
C. M.
Ho
and
R. J.
Scherrer
,
Phys. Lett. B
722
,
341
(
2013
).
15.
V.
Savinov
,
N.
Papasimakis
,
D. P.
Tsai
, and
N. I.
Zheludev
,
Commun. Phys.
2
,
69
(
2019
).
16.
F.
Boudjema
and
C.
Hamzaoui
,
Phys. Rev. D
43
,
3748
(
1991
).
17.
I. B.
Khriplovich
,
Parity Nonconservation in Atomic Phenomena
(
Gordon and Breach
,
Oxford
,
1991
).
18.
E.
Ascher
,
Helv. Phys. Acta
39
,
40
(
1966
).
19.
E.
Ascher
,
Int. J. Magn.
5
,
287
(
1974
).
20.
V. M.
Dubovik
,
L. A.
Tosunyan
, and
V. V.
Tugushev
,
J. Exp. Theor. Phys.
63
,
344
(
1986
).
21.
22.
H.
Schmid
,
J. Phys.: Condens. Matter
20
,
434201
(
2008
).
23.
24.
K. C.
Erb
and
J.
Hlinka
,
Phase Transitions
91
,
953
(
2018
).
25.
A. A.
Gorbatsevich
and
Y. V.
Kopaev
,
Ferroelectrics
161
,
321
(
1994
).
26.
V. I.
Dubovik
and
A. A.
Cheshkov
,
Sov. J. Exp. Theor. Phys.
24
,
924
(
1967
)
V. I.
Dubovik
and
A. A.
Cheshkov
[
Zh. Eksp. Teor. Fiz.
51
,
1369
1373
(
1966
)].
27.
V. M.
Dubovik
and
A. A.
Cheshkov
,
Sov. J. Part. Nucl.
5
,
318
(
1975
)
V. M.
Dubovik
and
A. A.
Cheshkov
[
Fiz. Elem. Chastits At. Yadra
5
(
3
),
791
837
(
1974
)].
28.
V. M.
Dubovik
,
S. S.
Krotov
, and
V. V.
Tugushev
,
Sov. Phys. Crystallogr.
32
,
314
(
1987
).
29.
G. N.
Afanasiev
,
Phys. Scr.
48
,
385
(
1993
).
30.
G. N.
Afanasiev
and
V. M.
Dubovik
,
Phys. Part. Nucl.
29
,
366
(
1998
).
31.
V. M.
Dubovik
,
M. A.
Martsenyuk
, and
B.
Saha
,
Phys. Rev. E
61
,
7087
(
2000
).
32.
G. N.
Afanasiev
,
J. Phys. D: Appl. Phys.
34
,
539
(
2001
).
33.
T. A.
Gongora
and
E.
Ley-Koo
,
Rev. Mexic. Fisica
52
,
177
(
2006
).
34.
E. A.
Gurvitz
,
K. S.
Ladutenko
,
P. A.
Dergachev
,
A. B.
Evlyukhin
,
A. E.
Miroshnichenko
, and
A. S.
Shalin
,
Laser Photonics Rev.
13
,
1800266
(
2019
).
35.
X.-L.
Zhang
,
S. B.
Wang
,
Z.
Lin
,
H.-B.
Sun
, and
C. T.
Chan
,
Phys. Rev. A
92
,
043804
(
2015
).
36.
I.
Fernandez-Corbaton
,
S.
Nanz
, and
C.
Rockstuhl
,
Sci. Rep.
7
,
7527
(
2017
).
37.
R.
Alaee
,
C.
Rockstuhl
, and
I.
Fernandez-Corbaton
,
Opt. Commun.
407
,
17
(
2018
).
38.
J.
van Bladel
,
Electron. Lett.
24
,
492
(
1988
).
39.
C. S.
Wood
,
S. C.
Bennett
,
D.
Cho
,
B. P.
Masterson
,
J. L.
Roberts
,
C. E.
Tanner
, and
C. E.
Wieman
,
Science
275
,
1759
(
1997
).
40.
R.
Hasty
,
A. M.
Hawthorne-Allen
,
T.
Averett
,
D.
Barkhuff
,
D. H.
Beck
,
E. J.
Beise
,
A.
Blake
,
H.
Breuer
,
R.
Carr
,
S.
Covrig
,
A.
Danagoulian
,
G.
Dodson
,
K.
Dow
,
M.
Farkhondeh
,
B. W.
Filippone
,
J.
Gao
,
M. C.
Herda
,
T. M.
Ito
,
C. E.
Jones
,
W.
Korsch
,
K.
Kramer
,
S.
Kowalski
,
P.
Lee
,
R. D.
McKeown
,
B.
Mueller
,
M.
Pitt
,
J.
Ritter
,
J.
Roche
,
V.
Savu
,
D. T.
Spayde
,
R.
Tieulent
,
E.
Tsentalovich
,
S. P.
Wells
,
B.
Yang
, and
T.
Zwart
,
Science
290
,
2117
(
2000
).
41.
V. V.
Flambaum
and
I. B. Y.
Khriplovich
,
Sov. Phys. JETP
79
,
1656
(
1980
);
V. V.
Flambaum
and
I. B. Y.
Khriplovich
,
Sov. Phys. JETP
ibid.
52
,
835
839
(
1980
).
42.
V. V.
Flambaum
,
I. B.
Khriplovich
, and
O. P.
Sushkov
,
Phys. Lett. B
146
,
367
(
1984
).
43.
W. C.
Haxton
,
C.-P.
Liu
, and
M. J.
Ramsey-Musolf
,
Phys. Rev. C
65
,
045502
(
2002
).
44.
C.
Ederer
and
N. A.
Spaldin
,
Phys. Rev. B
76
,
214404
(
2007
).
45.
N. A.
Spaldin
,
M.
Fiebig
, and
M.
Mostovoy
,
J. Phys.: Condens. Matter
20
,
434203
(
2008
).
46.
S.
Hayami
,
H.
Kusunose
, and
Y.
Motome
,
Phys. Rev. B
90
,
024432
(
2014
).
47.
Y.
Yang
and
S. I.
Bozhevolnyi
,
Nanotechnology
30
,
204001
(
2019
).
48.
K. V.
Baryshnikova
,
D. A.
Smirnova
,
B. S.
Luk’yanchuk
, and
Y. S.
Kivshar
,
Adv. Opt. Mater.
7
,
1801350
(
2019
).
49.
T.
Kaelberer
,
V. A.
Fedotov
,
N.
Papasimakis
,
D. P.
Tsai
, and
N. I.
Zheludev
,
Science
330
,
1510
(
2010
).
50.
A. A.
Basharin
,
M.
Kafesaki
,
E. N.
Economou
,
C. M.
Soukoulis
,
V. A.
Fedotov
,
V.
Savinov
, and
N. I.
Zheludev
,
Phys. Rev. X
5
,
011036
(
2015
).
51.
V. A.
Fedotov
,
A. V.
Rogacheva
,
V.
Savinov
,
D. P.
Tsai
, and
N. I.
Zheludev
,
Sci. Rep.
3
,
2967
(
2013
).
52.
N.
Papasimakis
,
V. A.
Fedotov
,
K.
Marinov
, and
N. I.
Zheludev
,
Phys. Rev. Lett.
103
,
093901
(
2009
).
53.
D. W.
Watson
,
S. D.
Jenkins
,
J.
Ruostekoski
,
V. A.
Fedotov
, and
N. I.
Zheludev
,
Phys. Rev. B
93
,
125420
(
2016
).
54.
S.
Guo
,
N.
Talebi
,
A.
Campos
,
M.
Kociak
, and
P. A.
van Aken
,
ACS Photonics
6
,
467
(
2019
).
55.
W.
Liu
and
Y. S.
Kivshar
,
Philos. Trans. R. Soc., A
375
,
20160317
(
2017
).
56.
S.
Nanz
,
Toroidal Multipole Moments in Classical Electrodynamics
(
Springer Fachmedien Wiesbaden
,
Wiesbaden
,
2016
).
57.
S.
Prosandeev
,
I.
Ponomareva
,
I.
Kornev
,
I.
Naumov
, and
L.
Bellaiche
,
Phys. Rev. Lett.
96
,
237601
(
2006
).
58.
N.
Papasimakis
,
V. A.
Fedotov
,
V.
Savinov
,
T. A.
Raybould
, and
N. I.
Zheludev
,
Nat. Mater.
15
,
263
(
2016
).
59.
V. L.
Ginzburg
,
A. A.
Gorbatsevich
,
Y. V.
Kopayev
, and
B. A.
Volkov
,
Solid State Commun.
50
,
339
(
1984
).
60.
D. G.
Sannikov
,
Ferroelectrics
219
,
177
(
1998
).
61.
V. M.
Dubovik
and
V. V.
Tugushev
,
Phys. Rep.
187
,
145
(
1990
).
62.
M. J.
Musolf
and
B. R.
Holstein
,
Phys. Rev. D
43
,
2956
(
1991
).
63.
E. E.
Radescu
and
G.
Vaman
,
Phys. Rev. E
65
,
035601
(
2002
).
64.
N.
Talebi
,
S.
Guo
, and
P.
van Aken
,
Nanophotonics
7
,
93
(
2017
).
65.
E.
Steiner
and
P. W.
Fowler
,
Org. Biomol. Chem.
2
,
34
(
2004
).
66.
G.
Monaco
,
P. W.
Fowler
,
M.
Lillington
, and
R.
Zanasi
,
Angew. Chem., Int. Ed.
46
,
1889
,
00026
(
2007
).
67.
R. R.
Valiev
,
G. V.
Baryshnikov
,
R. T.
Nasibullin
,
D.
Sundholm
, and
H.
Ågren
,
J. Phys. Chem. C
124
,
21027
(
2020
).
68.
P.
Lazzeretti
,
J. Chem. Phys.
149
,
154106
(
2018
), and references therein.
69.
N.
Zarycz
,
P. F.
Provasi
,
G. I.
Pagola
,
M. B.
Ferraro
,
S.
Pelloni
, and
P.
Lazzeretti
,
J. Comput. Chem.
37
,
1552
(
2016
).
70.
A.
Ceulemans
,
L. F.
Chibotaru
, and
P. W.
Fowler
,
Phys. Rev. Lett.
80
,
1861
(
1998
).
71.
E. I.
Tellgren
and
H.
Fliegl
,
J. Chem. Phys.
139
,
164118
(
2013
).
72.
S.
Sen
and
E. I.
Tellgren
,
J. Chem. Phys.
148
,
184112
(
2018
).
73.
S.
Sen
and
E. I.
Tellgren
,
J. Chem. Theory Comput.
17
,
1480
(
2021
).
74.
P.
Lazzeretti
,
J. Chem. Phys.
150
,
184117
(
2019
).
75.
P.
Lazzeretti
,
J. Chem. Phys.
151
,
114108
(
2019
).
76.
F. F.
Summa
,
G.
Monaco
,
P.
Lazzeretti
, and
R.
Zanasi
,
J. Phys. Chem. Lett.
12
,
8855
(
2021
).
77.
J. C. Y.
Chen
,
J. Chem. Phys.
40
,
615
(
1964
).
78.
D. P.
Chong
and
M. L.
Benston
,
J. Chem. Phys.
49
,
1302
(
1968
).
79.
P.
Lazzeretti
,
J. Chem. Phys.
153
,
074102
(
2020
), and references therein.
80.
A.
Costescu
and
E. E.
Radescu
,
Phys. Rev. D
35
,
3496
(
1987
).
82.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Photons and Atoms: Introduction to Quantum Electrodynamics
(
Wiley
,
New York
,
1989
).
83.
K.
Collard
and
G. G.
Hall
,
Int. J. Quantum Chem.
12
,
623
(
1977
).
84.
J. A. N. F.
Gomes
,
Phys. Rev. A
28
,
559
(
1983
).
85.
S.
Pelloni
,
F.
Faglioni
,
R.
Zanasi
, and
P.
Lazzeretti
,
Phys. Rev. A
74
,
012506
(
2006
).
86.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
, 2nd ed. (
Westview Press, A Member of the Perseus Books Group
,
Boulder, CO
,
2015
).
87.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
88.
F. F.
Summa
,
G.
Monaco
,
P.
Lazzeretti
, and
R.
Zanasi
,
Phys. Chem. Chem. Phys.
23
,
15268
(
2021
).
89.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
,
J. Chem. Inf. Model.
59
,
4814
(
2019
).
90.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
91.
G.
Monaco
,
F. F.
Summa
, and
R.
Zanasi
,
J. Chem. Inf. Model.
61
,
270
(
2021
).
92.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
93.
V.
Lebedev
,
Dokl. Akad. Nauk
338
,
454
(
1994
).
94.
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
, 9th ed., Dover Books on Mathematics, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover Publications
,
New York
,
2013
).
95.
F. F.
Summa
and
P.
Lazzeretti
,
Chemistry
3
,
1022
(
2021
).
96.
J. W.
Reyn
and
Z.
Angew
,
Math. Phys.
15
,
540
(
1964
).
97.
B. A.
Tavger
and
V. M.
Zaitsev
,
Sov. Phys. JETP
3
,
430
(
1956
).
98.
M.
Hamermesh
,
Group Theory and its Applications to Physical Problems
(
Addison-Wesley
,
London
,
1972
).
99.
C. J.
Bradley
and
B. L.
Davies
,
Rev. Mod. Phys.
40
,
359
(
1968
).
100.

We would like to thank a reviewer for suggesting this term.

101.
V.
Ermolov
,
T.
Lindstrom
,
H.
Nieminen
,
M.
Olsson
,
M.
Read
,
T.
Ryhanen
,
S.
Silanto
, and
S.
Uhrberg
,
IEEE Trans. Microwave Theory Tech.
52
,
29
(
2004
).
102.
P. J.
Mohr
,
D. B.
Newell
,
B. N.
Taylor
, and
E.
Tiesinga
,
Metrologia
55
,
125
(
2018
).
You do not currently have access to this content.