In the field of materials science, the main objective of predictive models is to provide scientists with reliable tools for fast and accurate identification of new materials with exceptional properties. Over the last few years, machine learning methods have been extensively used for the study of the gas-adsorption in nanoporous materials as an efficient alternative of molecular simulations and experiments. In several cases, the accuracy of the constructed predictive models for unknown materials is extremely high. In this study, we explored the adsorption of methane by metal organic frameworks (MOFs) and concluded that many top-performing materials often deviate significantly from the known materials used for the training of the machine learning algorithms. In such cases, the predictions of the machine learning algorithms may not be adequately accurate. For lack of the required appropriate data, we put forth a simple approach for the construction of artificial MOFs with the desired superior properties. Incorporation of such data during the training phase of the machine learning algorithms improves the predictions outstandingly. In some cases, over 96% of the unknown top-performing materials are successfully identified.

1.
M.
Kotzabasaki
and
G. E.
Froudakis
, “
Review of computer simulations on anti-cancer drug delivery in MOFs
,”
Inorg. Chem. Front.
5
,
1255
1272
(
2018
).
2.
N.
Brown
,
P.
Ertl
,
R.
Lewis
,
T.
Luksch
,
D.
Reker
, and
N.
Schneider
, “
Artificial intelligence in chemistry and drug design
,”
J. Comput.-Aided Mol. Des.
34
,
709
715
(
2020
).
3.
M.
Kotzabasaki
,
I.
Galdadas
,
E.
Tylianakis
,
E.
Klontzas
,
Z.
Cournia
, and
G. E.
Froudakis
, “
Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery
,”
J. Mater. Chem. B
5
,
3277
3282
(
2017
).
4.
J.
Lee
,
O. K.
Farha
,
J.
Roberts
,
K. A.
Scheidt
,
S. T.
Nguyen
, and
J. T.
Hupp
, “
Metal-organic framework materials as catalysts
,”
Chem. Soc. Rev.
38
,
1450
1459
(
2009
).
5.
L.
Sarkisov
, “
Toward rational design of metal–organic frameworks for sensing applications: Efficient calculation of adsorption characteristics in zero loading regime
,”
J. Phys. Chem. C
116
,
3025
3033
(
2012
).
6.
K.
Sumida
,
D. L.
Rogow
,
J. A.
Mason
,
T. M.
McDonald
,
E. D.
Bloch
,
Z. R.
Herm
,
T.-H.
Bae
, and
J. R.
Long
, “
Carbon dioxide capture in metal–organic frameworks
,”
Chem. Rev.
112
,
724
781
(
2012
).
7.
N. L.
Rosi
,
J.
Eckert
,
M.
Eddaoudi
,
D. T.
Vodak
,
J.
Kim
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
Hydrogen storage in microporous metal-organic frameworks
,”
Science
300
,
1127
1129
(
2003
).
8.
K. V.
Kumar
,
K.
Preuss
,
M.-M.
Titirici
, and
F.
Rodríguez-Reinoso
, “
Nanoporous materials for the onboard storage of natural gas
,”
Chem. Rev.
117
,
1796
1825
(
2017
).
9.
D. P.
Broom
,
C. J.
Webb
,
G. S.
Fanourgakis
,
G. E.
Froudakis
,
P. N.
Trikalitis
, and
M.
Hirscher
, “
Concepts for improving hydrogen storage in nanoporous materials
,”
Int. J. Hydrogen Energy
44
,
7768
7779
(
2019
).
10.
S.
Lee
,
B.
Kim
,
H.
Cho
,
H.
Lee
,
S. Y.
Lee
,
E. S.
Cho
, and
J.
Kim
, “
Computational screening of trillions of metal–organic frameworks for high-performance methane storage
,”
ACS Appl. Mater. Interfaces
13
,
23647
23654
(
2021
).
11.
Y.
Liu
,
T.
Zhao
,
W.
Ju
, and
S.
Shi
, “
Materials discovery and design using machine learning
,”
J. Mater.
3
,
159
177
(
2017
).
12.
A. W.
Thornton
,
C. M.
Simon
,
J.
Kim
,
O.
Kwon
,
K. S.
Deeg
,
K.
Konstas
,
S. J.
Pas
,
M. R.
Hill
,
D. A.
Winkler
,
M.
Haranczyk
, and
B.
Smit
, “
Materials genome in action: Identifying the performance limits of physical hydrogen storage
,”
Chem. Mater.
29
,
2844
2854
(
2017
).
13.
A.
Ahmed
,
Y.
Liu
,
J.
Purewal
,
L. D.
Tran
,
A. G.
Wong-Foy
,
M.
Veenstra
,
A. J.
Matzger
, and
D. J.
Siegel
, “
Balancing gravimetric and volumetric hydrogen density in MOFs
,”
Energy Environ. Sci.
10
,
2459
2471
(
2017
).
14.
J.
Goldsmith
,
A. G.
Wong-Foy
,
M. J.
Cafarella
, and
D. J.
Siegel
, “
Theoretical limits of hydrogen storage in metal-organic frameworks: Opportunities and trade-offs
,”
Chem. Mater.
25
,
3373
3382
(
2013
).
15.
M.
Suyetin
, “
The application of machine learning for predicting the methane uptake and working capacity of MOFs
,”
Faraday Discuss.
231
,
224
234
(
2021
).
16.
G. S.
Fanourgakis
,
K.
Gkagkas
,
E.
Tylianakis
,
E.
Klontzas
, and
G.
Froudakis
, “
A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials
,”
J. Phys. Chem. A
123
,
6080
6087
(
2019
).
17.
G. S.
Fanourgakis
,
K.
Gkagkas
,
E.
Tylianakis
, and
G.
Froudakis
, “
A generic machine learning algorithm for the prediction of gas adsorption in nanoporous materials
,”
J. Phys. Chem. C
124
,
7117
7126
(
2020
).
18.
G. S.
Fanourgakis
,
K.
Gkagkas
,
E.
Tylianakis
, and
G. E.
Froudakis
, “
A universal machine learning algorithm for large-scale screening of materials
,”
J. Am. Chem. Soc.
142
,
3814
3822
(
2020
).
19.
I.
Tsamardinos
,
G. S.
Fanourgakis
,
E.
Greasidou
,
E.
Klontzas
,
K.
Gkagkas
, and
G. E.
Froudakis
, “
An automated machine learning architecture for the accelerated prediction of metal-organic frameworks performance in energy and environmental applications
,”
Microporous Mesoporous Mater.
300
,
110160
(
2020
).
20.
M.
Pardakhti
,
E.
Moharreri
,
D.
Wanik
,
S. L.
Suib
, and
R.
Srivastava
, “
Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)
,”
ACS Comb. Sci.
19
,
640
645
(
2017
).
21.
A. W.
Thornton
,
D. A.
Winkler
,
M. S.
Liu
,
M.
Haranczyk
, and
D. F.
Kennedy
, “
Towards computational design of zeolite catalysts for CO2 reduction
,”
RSC Adv.
5
,
44361
44370
(
2015
).
22.
T. F.
Willems
,
C. H.
Rycroft
,
M.
Kazi
,
J. C.
Meza
, and
M.
Haranczyk
, “
Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
,”
Microporous Mesoporous Mater.
149
,
134
141
(
2012
).
23.
M.
Tong
,
Y.
Lan
,
Q.
Yang
, and
C.
Zhong
, “
High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture
,”
Green Energy Environ.
3
,
107
119
(
2018
).
24.
F.-X.
Coudert
and
A. H.
Fuchs
, “
Computational characterization and prediction of metal-organic framework properties
,”
Coord. Chem. Rev.
307
,
211
236
(
2016
).
25.
H.
Ohno
and
Y.
Mukae
, “
Machine learning approach for prediction and search: Application to methane storage in a metal-organic framework
,”
J. Phys. Chem. C
120
,
23963
23968
(
2016
).
26.
H.
Dureckova
,
M.
Krykunov
,
M. Z.
Aghaji
, and
T. K.
Woo
, “
Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture
,”
J. Phys. Chem. C
123
,
4133
4139
(
2019
).
27.
B. J.
Bucior
,
N. S.
Bobbitt
,
T.
Islamoglu
,
S.
Goswami
,
A.
Gopalan
,
T.
Yildirim
,
O. K.
Farha
,
N.
Bagheri
, and
R. Q.
Snurr
, “
Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks
,”
Mol. Syst. Des. Eng.
4
,
162
174
(
2019
).
28.
Z.
Li
,
B. J.
Bucior
,
H.
Chen
,
M.
Haranczyk
,
J. I.
Siepmann
, and
R. Q.
Snurr
, “
Machine learning using host/guest energy histograms to predict adsorption in metal-organic frameworks: Application to short alkanes and Xe/Kr mixtures
,”
J. Chem. Phys.
155
,
014701
(
2021
).
29.
R.
Anderson
,
A.
Biong
, and
D. A.
Gómez-Gualdrón
, “
Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model
,”
J. Chem. Theory Comput.
16
,
1271
1283
(
2020
).
30.
R.
Anderson
and
D. A.
Gómez-Gualdrón
, “
Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures
,”
J. Chem. Phys.
154
,
234102
(
2021
).
31.
R.
Gurnani
,
Z.
Yu
,
C.
Kim
,
D. S.
Sholl
, and
R.
Ramprasad
, “
Interpretable machine learning-based predictions of methane uptake isotherms in metal-organic frameworks
,”
Chem. Mater.
33
,
3543
3552
(
2021
).
32.
G. S.
Fanourgakis
,
K.
Gkagkas
,
E.
Tylianakis
, and
G.
Froudakis
, “
Fast screening of large databases for top performing nanomaterials using a self-consistent, machine learning based approach
,”
J. Phys. Chem. C
124
,
19639
19648
(
2020
).
33.
M.
Fernandez
,
P. G.
Boyd
,
T. D.
Daff
,
M. Z.
Aghaji
, and
T. K.
Woo
, “
Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture
,”
J. Phys. Chem. Lett.
5
,
3056
3060
(
2014
).
34.
M. Z.
Aghaji
,
M.
Fernandez
,
P. G.
Boyd
,
T. D.
Daff
, and
T. K.
Woo
, “
Quantitative structure-property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/CH4 selectivity for methane purification
,”
Eur. J. Inorg. Chem.
2016
,
4505
4511
.
35.
R.
Wang
,
Y.
Zhong
,
L.
Bi
,
M.
Yang
, and
D.
Xu
, “
Accelerating discovery of metal–organic frameworks for methane adsorption with hierarchical screening and deep learning
,”
ACS Appl. Mater. Interfaces
12
,
52797
52807
(
2020
).
36.
S.
Lee
,
B.
Kim
, and
J.
Kim
, “
Discovery of record-breaking metal-organic frameworks for methane storage using evolutionary algorithm and machine learning
,” ChemRxiv:12333077 (
2020
).
37.
C.
Altintas
,
O. F.
Altundal
,
S.
Keskin
, and
R.
Yildirim
, “
Machine learning meets with metal organic frameworks for gas storage and separation
,”
J. Chem. Inf. Model.
61
,
2131
2146
(
2021
).
38.
Z.
Shi
,
W.
Yang
,
X.
Deng
,
C.
Cai
,
Y.
Yan
,
H.
Liang
,
Z.
Liu
, and
Z.
Qiao
, “
Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks
,”
Mol. Syst. Des. Eng.
5
,
725
742
(
2020
).
39.
F.
Mosteller
and
J.
Tukey
, “
Data analysis, including statistics
,” in
Handbook of Social Psychology
, edited by
G.
Lindzey
and
E.
Aronson
(
Addison-Wesley
,
1968
), Vol. 2, pp.
80
203
.
40.
I.
Tsamardinos
,
E.
Greasidou
, and
G.
Borboudakis
, “
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation
,”
Mach. Learn.
107
,
1895
1922
(
2018
).
41.
M.
Kuhn
and
K.
Johnson
,
Applied Predictive Modeling
(
Springer
,
New York
,
2013
), pp.
1
600
.
42.
M.
McCartney
,
M.
Haeringer
, and
W.
Polifke
, “
Comparison of machine learning algorithms in the interpolation and extrapolation of flame describing functions
,”
J. Eng. Gas Turbines Power
142
,
061009
(
2020
).
43.
H.
Zhang
,
D.
Nettleton
, and
Z.
Zhu
, “
Regression-enhanced random forests
,” arXiv:1904.10416 (
2019
).
44.
Y. G.
Chung
,
E.
Haldoupis
,
B. J.
Bucior
,
M.
Haranczyk
,
S.
Lee
,
H.
Zhang
,
K. D.
Vogiatzis
,
M.
Milisavljevic
,
S.
Ling
,
J. S.
Camp
,
B.
Slater
,
J. I.
Siepmann
,
D. S.
Sholl
, and
R. Q.
Snurr
, “
Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019
,”
J. Chem. Eng. Data
64
,
5985
5998
(
2019
).
45.
N.
Lubna
,
G.
Kamath
,
J. J.
Potoff
,
N.
Rai
, and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene
,”
J. Phys. Chem. B
109
,
24100
24107
(
2005
).
46.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
47.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
,
81
101
(
2016
).
48.
A. D.
Flaxman
,
A.
Vahdatpour
,
S.
Green
,
S. L.
James
, and
C. J.
Murray
, “
Random forests for verbal autopsy analysis: Multisite validation study using clinical diagnostic gold standards
,”
Popul. Health Metrics
9
,
29
(
2011
).
49.
A. J.
Smola
and
B.
Schölkopf
, “
A tutorial on support vector regression
,”
Stat. Comput.
14
,
199
222
(
2004
).
50.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
A.
Müller
,
J.
Nothman
,
G.
Louppe
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
É.
Duchesnay
, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
51.
H.
Hotelling
, “
Analysis of a complex of statistical variables into principal components
,”
J. Educ. Psychol.
24
,
417
441
(
1933
).
52.
M.
Ceriotti
, “
Unsupervised machine learning in atomistic simulations, between predictions and understanding
,”
J. Chem. Phys.
150
,
150901
(
2019
).
53.
L.
van der Maaten
and
G.
Hinton
, “
Visualizing data using t-SNE
,”
J. Mach. Learn. Res.
9
,
2579
2605
(
2008
).
54.
S. M.
Moosavi
,
A.
Nandy
,
K. M.
Jablonka
,
D.
Ongari
,
J. P.
Janet
,
P. G.
Boyd
,
Y.
Lee
,
B.
Smit
, and
H. J.
Kulik
, “
Understanding the diversity of the metal-organic framework ecosystem
,”
Nat. Commun.
11
,
4068
(
2020
).
55.
A.
Deshwal
,
C. M.
Simon
, and
J. R.
Doppa
, “
Bayesian optimization of nanoporous materials
,”
Mol. Syst. Des. Eng.
6
,
1066
1086
(
2021
).
56.
R.
Mercado
,
R.-S.
Fu
,
A. V.
Yakutovich
,
L.
Talirz
,
M.
Haranczyk
, and
B.
Smit
, “
In silico design of 2D and 3D covalent organic frameworks for methane storage applications
,”
Chem. Mater.
30
,
5069
5086
(
2018
).

Supplementary Material

You do not currently have access to this content.