Graphene has received tremendous interest in both chemical and physical fields. Among different edges of the graphene system, the zigzag edge terminated graphene nanoribbons (ZGNRs) show unique magnetic properties in the antiferromagnetic (AFM) state. However, to date, the understanding of ZGNR chemical properties is mainly based on the partial radical concept, and in previous studies, the energy differences between the ferromagnetic (FM) and AFM states are smaller than experimental evidence. Here, we report that the strongly constrained and appropriately normed functional gives a significantly larger energy difference, which matches the experimental observation. Furthermore, utilizing the energetics in the large difference case, we propose a conceptual supplement to the previous partial radical concept: the overall stabilization of the AFM state compared to the nonmagnetic (NM) state consists of two parts that affect the adsorption energy conversely. The NM-FM energy differences will strengthen the adsorption, being in line with the previous partial radical concept. The FM-AFM energy differences will instead weaken the adsorption. We perform calculations of H, OH, and LiS radical adsorption energies on ZGNRs to show that this weakening effect is numerically non-negligible: at least a ∼0.2 eV difference in the adsorption energies is found. We expect that this refinement of the partial radical concept can provide a more comprehensive understanding of the chemical properties of ZGNRs. The differences in adsorption energies for the H, OH, and LiS radicals found here lead to significant changes in the predicted reactivity of the ZGNR models.

1.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
2.
M. J.
Allen
,
V. C.
Tung
, and
R. B.
Kaner
, “
Honeycomb carbon: A review of graphene
,”
Chem. Rev.
110
,
132
145
(
2009
).
3.
K. S.
Novoselov
,
V. I.
Fal′ko
,
L.
Colombo
,
P. R.
Gellert
,
M. G.
Schwab
, and
K.
Kim
, “
A roadmap for graphene
,”
Nature
490
,
192
200
(
2012
).
4.
A. N.
Grigorenko
,
M.
Polini
, and
K. S.
Novoselov
, “
Graphene plasmonics
,”
Nat. Photonics
6
,
749
758
(
2012
).
5.
M.
Fujita
,
K.
Wakabayashi
,
K.
Nakada
, and
K.
Kusakabe
, “
Peculiar localized state at zigzag graphite edge
,”
J. Phys. Soc. Jpn.
65
,
1920
1923
(
1996
).
6.
K.
Kobayashi
, “
Electronic structure of a stepped graphite surface
,”
Phys. Rev. B
48
,
1757
1760
(
1993
).
7.
D. J.
Klein
, “
Graphitic polymer strips with edge states
,”
Chem. Phys. Lett.
217
,
261
265
(
1994
).
8.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
,”
Phys. Rev. B
54
,
17954
17961
(
1996
).
9.
K.
Wakabayashi
,
M.
Fujita
,
H.
Ajiki
, and
M.
Sigrist
, “
Electronic and magnetic properties of nanographite ribbons
,”
Phys. Rev. B
59
,
8271
8282
(
1999
).
10.
A.
Yamashiro
,
Y.
Shimoi
,
K.
Harigaya
, and
K.
Wakabayashi
, “
Spin- and charge-polarized states in nanographene ribbons with zigzag edges
,”
Phys. Rev. B
68
,
193410
(
2003
).
11.
K.
Sasaki
,
S.
Murakami
, and
R.
Saito
, “
Stabilization mechanism of edge states in graphene
,”
Appl. Phys. Lett.
88
,
113110
(
2006
).
12.
J.
Jung
,
T.
Pereg-Barnea
, and
A. H.
MacDonald
, “
Theory of interedge superexchange in zigzag edge magnetism
,”
Phys. Rev. Lett.
102
,
227205
(
2009
).
13.
J.
Jung
, “
Nonlocal exchange effects in zigzag-edge magnetism of neutral graphene nanoribbons
,”
Phys. Rev. B
83
,
165415
(
2011
).
14.
T.
Kawai
,
Y.
Miyamoto
,
O.
Sugino
, and
Y.
Koga
, “
Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities
,”
Phys. Rev. B
62
,
R16349
R16352
(
2000
).
15.
H.
Lee
,
Y.-W.
Son
,
N.
Park
,
S.
Han
, and
J.
Yu
, “
Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states
,”
Phys. Rev. B
72
,
174431
(
2005
).
16.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Half-metallic graphene nanoribbons
,”
Nature
444
,
347
349
(
2006
).
17.
L.
Pisani
,
J.
Chan
,
B.
Montanari
, and
N.
Harrison
, “
Electronic structure and magnetic properties of graphitic ribbons
,”
Phys. Rev. B
75
,
064418
(
2007
).
18.
D.-e.
Jiang
,
B. G.
Sumpter
, and
S.
Dai
, “
Unique chemical reactivity of a graphene nanoribbon’s zigzag edge
,”
J. Chem. Phys.
126
,
134701
(
2007
).
19.
G. Z.
Magda
,
X.
Jin
,
I.
Hagymási
,
P.
Vancsó
,
Z.
Osváth
,
P.
Nemes-Incze
,
C.
Hwang
,
L. P.
Biró
, and
L.
Tapasztó
, “
Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
,”
Nature
514
,
608
611
(
2014
).
20.
P.
Ruffieux
,
S.
Wang
,
B.
Yang
,
C.
Sánchez-Sánchez
,
J.
Liu
,
T.
Dienel
,
L.
Talirz
,
P.
Shinde
,
C. A.
Pignedoli
,
D.
Passerone
,
T.
Dumslaff
,
X.
Feng
,
K.
Müllen
, and
R.
Fasel
, “
On-surface synthesis of graphene nanoribbons with zigzag edge topology
,”
Nature
531
,
489
492
(
2016
).
21.
Y. Y.
Li
,
M. X.
Chen
,
M.
Weinert
, and
L.
Li
, “
Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons
,”
Nat. Commun.
5
,
4311
(
2014
).
22.
D.
Deng
,
K. S.
Novoselov
,
Q.
Fu
,
N.
Zheng
,
Z.
Tian
, and
X.
Bao
, “
Catalysis with two-dimensional materials and their heterostructures
,”
Nat. Nanotechnol.
11
,
218
230
(
2016
).
23.
Y.
Jiao
,
Y.
Zheng
,
K.
Davey
, and
S.-Z.
Qiao
, “
Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene
,”
Nat. Energy
1
,
16130
(
2016
).
24.
Z.
Xia
, “
Hydrogen evolution: Guiding principles
,”
Nat. Energy
1
,
16155
(
2016
).
25.
M.
Li
,
L.
Zhang
,
Q.
Xu
,
J.
Niu
, and
Z.
Xia
, “
N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations
,”
J. Catal.
314
,
66
72
(
2014
).
26.
A.
Kulkarni
,
S.
Siahrostami
,
A.
Patel
, and
J. K.
Nørskov
, “
Understanding catalytic activity trends in the oxygen reduction reaction
,”
Chem. Rev.
118
,
2302
2312
(
2018
).
27.
L.
Peng
 et al, “
A fundamental look at electrocatalytic sulfur reduction reaction
,”
Nat. Catal.
3
,
762
770
(
2020
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
29.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
30.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
31.
J.
Nørskov
,
T.
Bligaard
,
A.
Logadottir
,
J.
Kitchin
,
J.
Chen
,
S.
Pandelov
, and
U.
Stimming
, “
Trends in the exchange current for hydrogen evolution
,”
J. Electrochem. Soc.
152
,
J23
(
2005
).
32.
J.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J.
Kitchin
,
T.
Bligaard
, and
H.
Jónsson
, “
Origin of the overpotential for oxygen reduction at a fuel-cell cathode
,”
J. Phys. Chem. B
108
,
17886
17892
(
2004
).
33.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
34.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and Solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
35.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
36.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
,
5029
5036
(
1999
).
37.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
, “
Influence of the exchange screening parameter on the performance of screened hybrid functionals
,”
J. Chem. Phys.
125
,
224106
(
2006
).
38.
Y.
Fu
and
D. J.
Singh
, “
Applicability of the strongly constrained and appropriately normed density functional to transition-metal magnetism
,”
Phys. Rev. Lett.
121
,
207201
(
2018
).
39.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M. L.
Klein
, and
J. P.
Perdew
, “
SCAN: An efficient density functional yielding accurate structures and energies of diversely-bonded materials
,” eprint: arXiv:1511.01089 (
2015
).
40.
Y.
Fu
and
D. J.
Singh
, “
Density functional methods for the magnetism of transition metals: Scan in relation to other functionals
,”
Phys. Rev. B
100
,
045126
(
2019
).
41.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
42.
V.
Viswanathan
,
H. A.
Hansen
,
J.
Rossmeisl
, and
J. K.
Nørskov
, “
Universality in oxygen reduction electrocatalysis on metal Surfaces
,”
ACS Catal.
2
,
1654
1660
(
2012
).
43.
J.
Greeley
,
T. F.
Jaramillo
,
J.
Bonde
,
I.
Chorkendorff
, and
J. K.
Nørskov
, “
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
,”
Nat. Mater.
5
,
909
913
(
2006
).
44.
F.
Calle-Vallejo
,
J.
Tymoczko
,
V.
Colic
,
Q. H.
Vu
,
M. D.
Pohl
,
K.
Morgenstern
,
D.
Loffreda
,
P.
Sautet
,
W.
Schuhmann
, and
A. S.
Bandarenka
, “
Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
,”
Science
350
,
185
189
(
2015
).
45.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).

Supplementary Material

You do not currently have access to this content.