The Fermi level of graphene on different substrates usually changes significantly due to the interface difference between graphene and two-dimensional semiconductors. This feature opens many possibilities of manipulating optoelectronic devices by constructing graphene heterostructures through interface modification. Herein, we report the fabrication and optoelectronic response of an unconventional heterojunction device based on a graphene–MoSe2 hybrid interface. Different from the traditional three or more layered structure where the semiconductor is sandwiched between two electrodes, this device contains only two atomic layers: the MoSe2 layer serving as the photon absorber and the graphene layer functioning as the charge acceptor and both electrodes. This structure looks like short-circuited but shows an obvious photoelectric response, which is aided by electron transfers from MoSe2 to graphene. The photocurrent generation is explored quantitatively with electronic dynamics of graphene aided with ultrafast measurements. The two-layered architecture simplifies the fabrication of atomic-thick optoelectronic devices, allowing the as-grown semiconductors to be directly used and eliminating the damage-prone transfer process.

1.
J.
Shim
,
H.-Y.
Park
,
D.-H.
Kang
,
J.-O.
Kim
,
S.-H.
Jo
,
Y.
Park
, and
J.-H.
Park
, “
Electronic and optoelectronic devices based on two‐dimensional materials: From fabrication to application
,”
Adv. Electron. Mater.
3
(
4
),
1600364
(
2017
).
2.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
2D materials and van der Waals heterostructures
,”
Science
353
(
6298
),
aac9439
(
2016
).
3.
K. F.
Mak
and
J.
Shan
, “
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
,”
Nat. Photonics
10
(
4
),
216
226
(
2016
).
4.
A. G.
Ricciardulli
and
P. W. M.
Blom
, “
Solution‐processable 2D materials applied in light‐emitting diodes and solar cells
,”
Adv. Mater. Technol.
5
(
8
),
1900972
(
2020
).
5.
Z.
Yin
,
S.
Sun
,
T.
Salim
,
S.
Wu
,
X.
Huang
,
Q.
He
,
Y. M.
Lam
, and
H.
Zhang
, “
Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes
,”
ACS Nano
4
(
9
),
5263
5268
(
2010
).
6.
A. G.
Ricciardulli
,
S.
Yang
,
X.
Feng
, and
P. W. M.
Blom
, “
Solution-processable high-quality graphene for organic solar cells
,”
ACS Appl. Mater. Interfaces
9
(
30
),
25412
25417
(
2017
).
7.
D.
Konios
,
C.
Petridis
,
G.
Kakavelakis
,
M.
Sygletou
,
K.
Savva
,
E.
Stratakis
, and
E.
Kymakis
, “
Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices
,”
Adv. Funct. Mater.
25
(
15
),
2213
2221
(
2015
).
8.
S.-S.
Li
,
K.-H.
Tu
,
C.-C.
Lin
,
C.-W.
Chen
, and
M.
Chhowalla
, “
Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells
,”
ACS Nano
4
(
6
),
3169
3174
(
2010
).
9.
J.
Liu
,
Y.
Xue
, and
L.
Dai
, “
Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells
,”
J. Phys. Chem. Lett.
3
(
14
),
1928
1933
(
2012
).
10.
Y.
Lin
,
B.
Adilbekova
,
Y.
Firdaus
,
E.
Yengel
,
H.
Faber
,
M.
Sajjad
,
X.
Zheng
,
E.
Yarali
,
A.
Seitkhan
, and
O. M.
Bakr
, “
17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS
,”
Adv. Mater.
31
(
46
),
1902965
(
2019
).
11.
D.
Geng
,
X.
Zhao
,
Z.
Chen
,
W.
Sun
,
W.
Fu
,
J.
Chen
,
W.
Liu
,
W.
Zhou
, and
K. P.
Loh
, “
Direct synthesis of large‐area 2D Mo2C on in situ grown graphene
,”
Adv. Mater.
29
(
35
),
1700072
(
2017
).
12.
X.
Wang
,
Y.
Gong
,
G.
Shi
,
W. L.
Chow
,
K.
Keyshar
,
G.
Ye
,
R.
Vajtai
,
J.
Lou
,
Z.
Liu
, and
E.
Ringe
, “
Chemical vapor deposition growth of crystalline monolayer MoSe2
,”
ACS Nano
8
(
5
),
5125
5131
(
2014
).
13.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
30
),
10451
10453
(
2005
).
14.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
15.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
(
1
),
109
(
2009
).
16.
F.
Schwierz
, “
Graphene transistors
,”
Nat. Nanotechnol.
5
(
7
),
487
496
(
2010
).
17.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
(
7459
),
419
425
(
2013
).
18.
L.
Britnell
,
R. V.
Gorbachev
,
R.
Jalil
,
B. D.
Belle
,
F.
Schedin
,
A.
Mishchenko
,
T.
Georgiou
,
M. I.
Katsnelson
,
L.
Eaves
, and
S. V.
Morozov
, “
Field-effect tunneling transistor based on vertical graphene heterostructures
,”
Science
335
(
6071
),
947
950
(
2012
).
19.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
20.
S. J.
Haigh
,
A.
Gholinia
,
R.
Jalil
,
S.
Romani
,
L.
Britnell
,
D. C.
Elias
,
K. S.
Novoselov
,
L. A.
Ponomarenko
,
A. K.
Geim
, and
R.
Gorbachev
, “
Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
,”
Nat. Mater.
11
(
9
),
764
767
(
2012
).
21.
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
G.
Ramalingam
,
S.
Raghavan
, and
A.
Ghosh
, “
Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices
,”
Nat. Nanotechnol.
8
(
11
),
826
830
(
2013
).
22.
Y.
Zhang
,
T.-R.
Chang
,
B.
Zhou
,
Y.-T.
Cui
,
H.
Yan
,
Z.
Liu
,
F.
Schmitt
,
J.
Lee
,
R.
Moore
, and
Y.
Chen
, “
Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2
,”
Nat. Nanotechnol.
9
(
2
),
111
(
2014
).
23.
L. M.
Malard
,
K.
Fai Mak
,
A. H.
Castro Neto
,
N. M. R.
Peres
, and
T. F.
Heinz
, “
Observation of intra- and inter-band transitions in the transient optical response of graphene
,”
New J. Phys.
15
(
1
),
015009
(
2013
).
24.
H. C.
Lee
,
W.-W.
Liu
,
S.-P.
Chai
,
A. R.
Mohamed
,
A.
Aziz
,
C.-S.
Khe
,
N. M. S.
Hidayah
, and
U.
Hashim
, “
Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene
,”
RSC Adv.
7
(
26
),
15644
15693
(
2017
).
25.
P.
Tonndorf
,
R.
Schmidt
,
P.
Böttger
,
X.
Zhang
,
J.
Börner
,
A.
Liebig
,
M.
Albrecht
,
C.
Kloc
,
O.
Gordan
, and
D. R. T.
Zahn
, “
Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2
,”
Opt. Express
21
(
4
),
4908
4916
(
2013
).
26.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
,”
Phys. Rev. B
88
(
4
),
045318
(
2013
).
27.
M. M.
Ugeda
,
A. J.
Bradley
,
S.-F.
Shi
,
F. H.
da Jornada
,
Y.
Zhang
,
D. Y.
Qiu
,
W.
Ruan
,
S.-K.
Mo
,
Z.
Hussain
, and
Z.-X.
Shen
, “
Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
,”
Nat. Mater.
13
(
12
),
1091
1095
(
2014
).
28.
X.
Hong
,
J.
Kim
,
S.-F.
Shi
,
Y.
Zhang
,
C.
Jin
,
Y.
Sun
,
S.
Tongay
,
J.
Wu
,
Y.
Zhang
, and
F.
Wang
, “
Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
,”
Nat. Nanotechnol.
9
(
9
),
682
686
(
2014
).
29.
J. M.
Dawlaty
,
S.
Shivaraman
,
J.
Strait
,
P.
George
,
M.
Chandrashekhar
,
F.
Rana
,
M. G.
Spencer
,
D.
Veksler
, and
Y.
Chen
, “
Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible
,”
Appl. Phys. Lett.
93
(
13
),
131905
(
2008
).
30.
V. P.
Gusynin
,
S. G.
Sharapov
, and
J. P.
Carbotte
, “
Unusual microwave response of Dirac quasiparticles in graphene
,”
Phys. Rev. Lett.
96
(
25
),
256802
(
2006
).
31.
S. A.
Mikhailov
and
K.
Ziegler
, “
New electromagnetic mode in graphene
,”
Phys. Rev. Lett.
99
(
1
),
016803
(
2007
).
32.
Q.
Ma
,
T. I.
Andersen
,
N. L.
Nair
,
N. M.
Gabor
,
M.
Massicotte
,
C. H.
Lui
,
A. F.
Young
,
W.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Kong
,
N.
Gedik
,
F. H. L.
Koppens
, and
P.
Jarillo-Herrero
, “
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
,”
Nat. Phys.
12
(
5
),
455
459
(
2016
).
33.
T.
Kampfrath
,
L.
Perfetti
,
F.
Schapper
,
C.
Frischkorn
, and
M.
Wolf
, “
Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite
,”
Phys. Rev. Lett.
95
(
18
),
187403
(
2005
).
34.
Z. Z.
Li
,
J. Y.
Wang
, and
Z. R.
Liu
, “
Intrinsic carrier mobility of Dirac cones: The limitations of deformation potential theory
,”
J. Chem. Phys.
141
(
14
),
144107
(
2014
).
35.
C.-H.
Park
,
N.
Bonini
,
T.
Sohier
,
G.
Samsonidze
,
B.
Kozinsky
,
M.
Calandra
,
F.
Mauri
, and
N.
Marzari
, “
Electron-phonon interactions and the intrinsic electrical resistivity of graphene
,”
Nano Lett.
14
(
3
),
1113
1119
(
2014
).
36.
S.
Piscanec
,
M.
Lazzeri
,
F.
Mauri
,
A. C.
Ferrari
, and
J.
Robertson
, “
Kohn anomalies and electron-phonon interactions in graphite
,”
Phys. Rev. Lett.
93
(
18
),
185503
(
2004
).
37.
C. H.
Lui
,
K. F.
Mak
,
J.
Shan
, and
T. F.
Heinz
, “
Ultrafast photoluminescence from graphene
,”
Phys. Rev. Lett.
105
(
12
),
127404
(
2010
).
38.
H.
Chen
,
X.
Wen
,
J.
Zhang
,
T.
Wu
,
Y.
Gong
,
X.
Zhang
,
J.
Yuan
,
C.
Yi
,
J.
Lou
,
P. M.
Ajayan
,
W.
Zhuang
,
G.
Zhang
, and
J.
Zheng
, “
Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures
,”
Nat. Commun.
7
,
12512
(
2016
).
39.
W. J.
Zhang
,
C. P.
Chuu
,
J. K.
Huang
,
C. H.
Chen
,
M. L.
Tsai
,
Y. H.
Chang
,
C. T.
Liang
,
Y. Z.
Chen
,
Y. L.
Chueh
,
J. H.
He
,
M. Y.
Chou
, and
L. J.
Li
, “
Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures
,”
Sci. Rep.
4
,
3826
(
2014
).
40.
H.
Chen
,
H.
Bian
,
J.
Li
,
X.
Guo
,
X.
Wen
, and
J.
Zheng
, “
Molecular conformations of crystalline L-cysteine determined with vibrational cross angle measurements
,”
J. Phys. Chem. B
117
(
49
),
15614
15624
(
2013
).
41.
H.
Chen
,
Y.
Zhang
,
J.
Li
,
H.
Liu
,
D.-E.
Jiang
, and
J.
Zheng
, “
Vibrational cross-angles in condensed molecules: A structural tool
,”
J. Phys. Chem. A
117
(
35
),
8407
8415
(
2013
).
You do not currently have access to this content.