The possibility of controlling electrokinetic transport through carbon and hexagonal boron nitride (hBN) nanotubes has recently opened new avenues for nanofluidic approaches to face outstanding challenges such as energy production and conversion or water desalination. The pH-dependence of experimental transport coefficients points to the sorption of hydroxide ions as the microscopic origin of the surface charge and recent ab initio calculations suggest that these ions behave differently on carbon and hBN, with only physisorption on the former and both physisorption and chemisorption on the latter. Using classical non-equilibrium molecular dynamics simulations of interfaces between an aqueous electrolyte and three models of hBN and graphite surfaces, we demonstrate the major influence of the sorption mode of hydroxide ions on the interfacial transport properties. Physisorbed surface charge leads to a considerable enhancement of the surface conductivity as compared to its chemisorbed counterpart, while values of the ζ-potential are less affected. The analysis of the MD results for the surface conductivity and ζ-potential in the framework of Poisson–Boltzmann–Stokes theory, as is usually done to analyze experimental data, further confirms the importance of taking into account both the mobility of surface hydroxide ions and the decrease in the slip length with increasing titratable surface charge density.

1.
J. C. T.
Eijkel
and
A.
van den Berg
, “
Nanofluidics: What is it and what can we expect from it?
,”
Microfluid. Nanofluid.
1
(
3
),
249
267
(
2005
).
2.
A.
Noy
,
H. G.
Park
,
F.
Fornasiero
,
J. K.
Holt
,
C. P.
Grigoropoulos
, and
O.
Bakajin
, “
Nanofluidics in carbon nanotubes
,”
Nano Today
2
(
6
),
22
29
(
2007
).
3.
A.
Siria
,
M.-L.
Bocquet
, and
L.
Bocquet
, “
New avenues for the large-scale harvesting of blue energy
,”
Nat. Rev. Chem.
1
(
11
),
0091
(
2017
).
4.
S.
Marbach
and
L.
Bocquet
, “
Osmosis, from molecular insights to large-scale applications
,”
Chem. Soc. Rev.
48
(
11
),
3102
3144
(
2019
).
5.
4—Electrokinetics and related phenomena
,” in
Fundamentals of Interface and Colloid Science
, edited by
J.
Lyklema
, Solid-Liquid Interfaces Vol. 2 (
Academic Press
,
1995
), p.
4-1
.
6.
R. J.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
(
Academic Press
,
2013
).
7.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
(
3
),
1073
1095
(
2010
).
8.
I.
Pagonabarraga
,
B.
Rotenberg
, and
D.
Frenkel
, “
Recent advances in the modelling and simulation of electrokinetic effects: Bridging the gap between atomistic and macroscopic descriptions
,”
Phys. Chem. Chem. Phys.
12
(
33
),
9566
9580
(
2010
).
9.
B.
Rotenberg
and
I.
Pagonabarraga
, “
Electrokinetics: Insights from simulation on the microscopic scale
,”
Mol. Phys.
111
(
7
),
827
842
(
2013
).
10.
A.
Striolo
,
A.
Michaelides
, and
L.
Joly
, “
The carbon-water interface: Modeling challenges and opportunities for the water-energy nexus
,”
Annu. Rev. Chem. Biomol. Eng.
7
(
1
),
533
556
(
2016
).
11.
N.
Kavokine
,
R. R.
Netz
, and
L.
Bocquet
, “
Fluids at the nanoscale: From continuum to subcontinuum transport
,”
Annu. Rev. Fluid Mech.
53
(
1
),
377
410
(
2021
).
12.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
, “
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
,”
Nature
494
(
7438
),
455
458
(
2013
).
13.
E.
Secchi
,
A.
Niguès
,
L.
Jubin
,
A.
Siria
, and
L.
Bocquet
, “
Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes
,”
Phys. Rev. Lett.
116
(
15
),
154501
(
2016
).
14.
E.
Secchi
,
S.
Marbach
,
A.
Niguès
,
D.
Stein
,
A.
Siria
, and
L.
Bocquet
, “
Massive radius-dependent flow slippage in carbon nanotubes
,”
Nature
537
(
7619
),
210
213
(
2016
).
15.
B.
Grosjean
,
C.
Pean
,
A.
Siria
,
L.
Bocquet
,
R.
Vuilleumier
, and
M.-L.
Bocquet
, “
Chemisorption of hydroxide on 2D materials from DFT calculations: Graphene versus hexagonal boron nitride
,”
J. Phys. Chem. Lett.
7
(
22
),
4695
4700
(
2016
).
16.
B.
Grosjean
,
M. L.
Bocquet
, and
R.
Vuilleumier
, “
Versatile electrification of two-dimensional nanomaterials in water
,”
Nat. Commun.
10
(
1
),
1656
(
2019
).
17.
B.
Grosjean
,
A.
Robert
,
R.
Vuilleumier
, and
M.-L.
Bocquet
, “
Spontaneous liquid water dissociation on hybridised boron nitride and graphene atomic layers from ab initio molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
22
(
19
),
10710
10716
(
2020
).
18.
S. R.
Maduar
,
A. V.
Belyaev
,
V.
Lobaskin
, and
O. I.
Vinogradova
, “
Electrohydrodynamics near hydrophobic surfaces
,”
Phys. Rev. Lett.
114
(
11
),
118301
(
2015
).
19.
E. F.
Silkina
,
E. S.
Asmolov
, and
O. I.
Vinogradova
, “
Electro-osmotic flow in hydrophobic nanochannels
,”
Phys. Chem. Chem. Phys.
21
(
41
),
23036
23043
(
2019
).
20.
T.
Mouterde
and
L.
Bocquet
, “
Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes
,”
Eur. Phys. J. E
41
(
12
),
148
(
2018
).
21.
P.
Ober
,
W. Q.
Boon
,
M.
Dijkstra
,
E. H. G.
Backus
,
R.
van Roij
, and
M.
Bonn
, “
Liquid flow reversibly creates a macroscopic surface charge gradient
,”
Nat. Commun.
12
(
1
),
4102
(
2021
).
22.
D. J.
Bonthuis
and
R. R.
Netz
, “
Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity
,”
Langmuir
28
(
46
),
16049
16059
(
2012
).
23.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Aqueous electrolytes near hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamic slip
,”
Langmuir
24
(
4
),
1442
1450
(
2008
).
24.
C. F.
Zukoski
and
D. A.
Saville
, “
The interpretation of electrokinetic measurements using a dynamic model of the Stern layer: I. The dynamic model
,”
J. Colloid Interface Sci.
114
(
1
),
32
44
(
1986
).
25.
M.
Manghi
,
J.
Palmeri
,
K.
Yazda
,
F.
Henn
, and
V.
Jourdain
, “
Role of charge regulation and flow slip in the ionic conductance of nanopores: An analytical approach
,”
Phys. Rev. E
98
(
1
),
012605
(
2018
).
26.
Y.
Uematsu
,
R. R.
Netz
,
L.
Bocquet
, and
D. J.
Bonthuis
, “
Crossover of the power-law exponent for carbon nanotube conductivity as a function of salinity
,”
J. Phys. Chem. B
122
(
11
),
2992
2997
(
2018
).
27.
Y. S.
Al-Hamdani
,
M.
Rossi
,
D.
Alfè
,
T.
Tsatsoulis
,
B.
Ramberger
,
J. G.
Brandenburg
,
A.
Zen
,
G.
Kresse
,
A.
Grüneis
,
A.
Tkatchenko
, and
A.
Michaelides
, “
Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy
,”
J. Chem. Phys.
147
(
4
),
044710
(
2017
).
28.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
29.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
(
6
),
1345
1352
(
2003
).
30.
C. Y.
Won
and
N. R.
Aluru
, “
Water permeation through a subnanometer boron nitride nanotube
,”
J. Am. Chem. Soc.
129
(
10
),
2748
2749
(
2007
).
31.
S.
Koneshan
,
J. C.
Rasaiah
,
R. M.
Lynden-Bell
, and
S. H.
Lee
, “
Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C
,”
J. Phys. Chem. B
102
(
21
),
4193
4204
(
1998
).
32.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
33.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
(
3
),
327
341
(
1977
).
34.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
2006
).
35.
M. A.
González
and
J. L. F.
Abascal
, “
The shear viscosity of rigid water models
,”
J. Chem. Phys.
132
(
9
),
096101
(
2010
).
36.
M.
Rami Reddy
and
M.
Berkowitz
, “
The dielectric constant of SPC/E water
,”
Chem. Phys. Lett.
155
(
2
),
173
176
(
1989
).
37.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
, “
Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
,”
J. Chem. Phys.
125
(
20
),
204716
(
2006
).
38.
Y.
Xie
,
L.
Fu
,
T.
Niehaus
, and
L.
Joly
, “
Liquid-solid slip on charged walls: The dramatic impact of charge distribution
,”
Phys. Rev. Lett.
125
(
1
),
014501
(
2020
).
39.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
, “
A limited memory algorithm for bound constrained optimization
,”
SIAM J. Sci. Comput.
16
,
1190
1208
(
1995
).
40.
T.
Mouterde
,
A.
Keerthi
,
A. R.
Poggioli
,
S. A.
Dar
,
A.
Siria
,
A. K.
Geim
,
L.
Bocquet
, and
B.
Radha
, “
Molecular streaming and its voltage control in ångström-scale channels
,”
Nature
567
(
7746
),
87
90
(
2019
).
41.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
, “
Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures
,”
Nano Lett.
14
(
12
),
6872
6877
(
2014
).
42.
G.
Tocci
,
M.
Bilichenko
,
L.
Joly
, and
M.
Iannuzzi
, “
Ab initio nanofluidics: Disentangling the role of the energy landscape and of density correlations on liquid/solid friction
,”
Nanoscale
12
(
20
),
10994
11000
(
2020
).
43.
A. R.
Poggioli
and
D. T.
Limmer
, “
Distinct chemistries explain decoupling of slip and wettability in atomically smooth aqueous interfaces
,”
J. Phys. Chem. Lett.
12
,
9060
9067
(
2021
).
44.
S.
Kumar Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations
,”
J. Chem. Phys.
136
(
2
),
024705
(
2012
).
45.
M. V.
Fedorov
and
A. A.
Kornyshev
, “
Towards understanding the structure and capacitance of electrical double layer in ionic liquids
,”
Electrochim. Acta
53
(
23
),
6835
6840
(
2008
).
46.
M. Z.
Bazant
,
B. D.
Storey
, and
A. A.
Kornyshev
, “
Double layer in ionic liquids: Overscreening versus crowding
,”
Phys. Rev. Lett.
106
(
4
),
046102
(
2011
).

Supplementary Material

You do not currently have access to this content.