Optimizing energy and charge transfer is key in design and implementation of efficient layered conductive metal–organic frameworks (MOFs) for practical applications. In this work, for the first time, we investigate the role of both long-range excitonic and short-range charge transfer coupling as well as their dependency on reorganization energy on through-space charge transfer in layered MOFs. A π-stacked model system is built based on the archetypal Ni3(HITP)2, HITP = 2,3,6,7,10,11-hexaiminotriphenylene, layered MOF, and a Frenkel/charge transfer Holstein Hamiltonian is developed that takes into account both electronic coupling and intramolecular vibrations. The dependency of the long- and short-range couplings of secondary building units (SBUs) on the stacking geometry is evaluated, which predicts that photophysical properties of layered MOFs critically depend on the degree of ordering between layers. We show that the impact of the two coupling sources in these materials can be discerned or enhanced by the displacement of the SBUs along the long or short molecular axes. The effects of vibronic spectral signatures are examined in both perturbative and resonance regimes. Although, to the best of our knowledge, displacement engineering in layered MOFs currently remains beyond reach, the findings reported here offer new details on the photophysical structure–property relationships in layered MOFs and provide suggestions on how to combine elements of molecular design and engineering to achieve desirable properties and functions for nano- and mesoscale optoelectronic applications.

1.
G.
Chakraborty
,
I.-H.
Park
,
R.
Medishetty
, and
J. J.
Vittal
, “
Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications
,”
Chem. Rev.
121
,
3751
3891
(
2021
).
2.
L. S.
Xie
,
G.
Skorupskii
, and
M.
Dincă
, “
Electrically conductive metal-organic frameworks
,”
Chem. Rev.
120
,
8536
8580
(
2020
).
3.
M.
Ko
,
L.
Mendecki
, and
K. A.
Mirica
, “
Conductive two-dimensional metal–organic frameworks as multifunctional materials
,”
Chem. Commun.
54
,
7873
7891
(
2018
).
4.
M. G.
Campbell
,
S. F.
Liu
,
T. M.
Swager
, and
M.
Dincă
, “
Chemiresistive sensor arrays from conductive 2D metal–organic frameworks
,”
J. Am. Chem. Soc.
137
,
13780
13783
(
2015
).
5.
T.
Qiu
,
Z.
Liang
,
W.
Guo
,
H.
Tabassum
,
S.
Gao
, and
R.
Zou
, “
Metal–organic framework-based materials for energy conversion and storage
,”
ACS Energy Lett.
5
,
520
532
(
2020
).
6.
J.
Nyakuchena
,
S.
Ostresh
,
D.
Streater
,
B.
Pattengale
,
J.
Neu
,
C.
Fiankor
,
W.
Hu
,
E. D.
Kinigstein
,
J.
Zhang
,
X.
Zhang
,
C. A.
Schmuttenmaer
, and
J.
Huang
, “
Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks
,”
J. Am. Chem. Soc.
142
,
21050
21058
(
2020
).
7.
M. D.
Allendorf
,
C. A.
Bauer
,
R. K.
Bhakta
, and
R. J. T.
Houk
, “
Luminescent metal–organic frameworks
,”
Chem. Soc. Rev.
38
,
1330
1352
(
2009
).
8.
Y.
Shi
,
M. R.
Momeni
,
Y.-J.
Chen
,
Z.
Zhang
, and
F. A.
Shakib
, “
Water-induced structural transformations in flexible two-dimensional layered conductive metal–organic frameworks
,”
Chem. Mater.
32
,
9664
9674
(
2020
).
9.
M. R.
Momeni
,
Z.
Zhang
, and
F. A.
Shakib
, “
Deterministic role of structural flexibility on catalytic activity of conductive 2D layered metal–organic frameworks
,”
Chem. Commun.
57
,
315
318
(
2021
).
10.
Z.
Zhang
,
D.
Dell’Angelo
,
M. R.
Momeni
,
Y.
Shi
, and
F. A.
Shakib
, “
Metal-to-semiconductor transition in two-dimensional layered metal–organic frameworks: An ab initio dynamics perspective
,”
ACS Appl. Mater. Interfaces
13
,
25270
25279
(
2021
).
11.
B. A.
Gregg
and
M. E.
Kose
, “
Reversible switching between molecular and charge transfer phases in a liquid crystalline organic semiconductor
,”
Chem. Mater.
20
,
5235
5239
(
2008
).
12.
J.
Frenkel
, “
On the transformation of light into heat in solids. I
,”
Phys. Rev.
37
,
17
44
(
1931
).
13.
N. J.
Hestand
and
F. C.
Spano
, “
Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer
,”
Chem. Rev.
118
,
7069
7163
(
2018
).
14.
L.
Cao
,
Z.
Lin
,
W.
Shi
,
Z.
Wang
,
C.
Zhang
,
X.
Hu
,
C.
Wang
, and
W.
Lin
, “
Exciton migration and amplified quenching on two-dimensional metal–organic layers
,”
J. Am. Chem. Soc.
139
,
7020
7029
(
2017
).
15.
W.-M.
Liao
,
J.-H.
Zhang
,
S.-Y.
Yin
,
H.
Lin
,
X.
Zhang
,
J.
Wang
,
H.-P.
Wang
,
K.
Wu
,
Z.
Wang
,
Y.-N.
Fan
,
M.
Pan
, and
C.-Y.
Su
, “
Tailoring exciton and excimer emission in an exfoliated ultrathin 2D metal-organic framework
,”
Nat. Commun.
9
,
2401
(
2018
).
16.
Y.
Liang
,
R.
Shang
,
J.
Lu
,
W.
An
,
J.
Hu
,
L.
Liu
, and
W.
Cui
, “
2D MOFs enriched g-C3N4 nanosheets for highly efficient charge separation and photocatalytic hydrogen evolution from water
,”
Int. J. Hydrogen Energy
44
,
2797
2810
(
2019
).
17.
N. J.
Hestand
and
F. C.
Spano
, “
Interference between coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks
,”
J. Chem. Phys.
143
,
244707
(
2015
).
18.
N.
Ogihara
,
N.
Ohba
, and
Y.
Kishida
, “
On/off switchable electronic conduction in intercalated metal-organic frameworks
,”
Sci. Adv.
3
,
e1603103
(
2017
).
19.

Throughout this manuscript, ET refers to both charge and energy transfer along the ππ stacking direction.

20.
K. N.
Le
and
C. H.
Hendon
, “
Pressure-induced metallicity and piezoreductive transition of metal-centres in conductive 2-dimensional metal–organic frameworks
,”
Phys. Chem. Chem. Phys.
21
,
25773
25778
(
2019
).
21.
D.
Sheberla
,
L.
Sun
,
M. A.
Blood-Forsythe
,
S.
Er
,
C. R.
Wade
,
C. K.
Brozek
,
A.
Aspuru-Guzik
, and
M.
Dincă
, “
High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue
,”
J. Am. Chem. Soc.
136
,
8859
8862
(
2014
).
22.
R. W.
Day
,
D. K.
Bediako
,
M.
Rezaee
,
L. R.
Parent
,
G.
Skorupskii
,
M. Q.
Arguilla
,
C. H.
Hendon
,
I.
Stassen
,
N. C.
Gianneschi
,
P.
Kim
, and
M.
Dincă
, “
Single crystals of electrically conductive two-dimensional metal–organic frameworks: Structural and electrical transport properties
,”
ACS Cent. Sci.
5
,
1959
1964
(
2019
).
23.

Here the assumption is that consecutive units are far enough apart that electron exchange and correlation contributions can be safely ignored.60 

24.
H.
Yamagata
and
F. C.
Spano
, “
Vibronic coupling in quantum wires: Applications to polydiacetylene
,”
J. Chem. Phys.
135
,
054906
(
2011
).
25.
H.
Yamagata
,
C. M.
Pochas
, and
F. C.
Spano
, “
Designing J- and H-aggregates through wave function overlap engineering: Applications to poly(3-hexylthiophene)
,”
J. Phys. Chem. B
116
,
14494
14503
(
2012
).
26.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley-VCH
,
Weinheim
,
2011
).
27.
E.
Hennebicq
,
G.
Pourtois
,
G. D.
Scholes
,
L. M.
Herz
,
D. M.
Russell
,
C.
Silva
,
S.
Setayesh
,
A. C.
Grimsdale
,
K.
Müllen
,
J.-L.
Brédas
, and
D.
Beljonne
, “
Exciton migration in rigid-rod conjugated polymers: An improved Förster model
,”
J. Am. Chem. Soc.
127
,
4744
4762
(
2005
).
28.
C.-P.
Hsu
, “
The electronic couplings in electron transfer and excitation energy transfer
,”
Acc. Chem. Res.
42
,
509
518
(
2009
).
29.
Z. Q.
You
and
C. P.
Hsu
, “
Theory and calculation for electronic coupling in excitation energy transfer
,”
Int. J. Quantum Chem.
114
,
102
115
(
2013
).
30.
J.
Aragó
and
A.
Troisi
, “
Excitonic couplings between molecular crystal pairs by a multistate approximation
,”
J. Chem. Phys.
142
,
164107
(
2015
).
31.
J. I.
Manchester
,
M. D.
Paulsen
, and
R. L.
Ornstein
, “
Calculation of atom-centered partial charges for heme
,”
Mol. Eng.
5
,
135
142
(
1995
).
32.
K. A.
Kistler
,
F. C.
Spano
, and
S.
Matsika
, “
A benchmark of excitonic couplings derived from atomic transition charges
,”
J. Phys. Chem. B
117
,
2032
2044
(
2013
).
33.
J.
Cornil
,
D.
Beljonne
,
J.-P.
Calbert
, and
J.-L.
Brédas
, “
Interchain interactions in organic π-conjugated materials: Impact on electronic structure, optical response, and charge transport
,”
Adv. Mater.
13
,
1053
1067
(
2001
).
34.
Y.
Kashimoto
,
K.
Yonezawa
,
M.
Meissner
,
M.
Gruenewald
,
T.
Ueba
,
S.
Kera
,
R.
Forker
,
T.
Fritz
, and
H.
Yoshida
, “
The evolution of intermolecular energy bands of occupied and unoccupied molecular states in organic thin films
,”
J. Phys. Chem. C
122
,
12090
12097
(
2018
).
35.
C. R.
Newman
,
C. D.
Frisbie
,
D. A.
da Silva Filho
,
J.-L.
Brédas
,
P. C.
Ewbank
, and
K. R.
Mann
, “
Introduction to organic thin film transistors and design of n-channel organic semiconductors
,”
Chem. Mater.
16
,
4436
4451
(
2004
).
36.
K.
Senthilkumar
,
F. C.
Grozema
,
C. F.
Guerra
,
F. M.
Bickelhaupt
,
F. D.
Lewis
,
Y. A.
Berlin
,
M. A.
Ratner
, and
L. D. A.
Siebbeles
, “
Absolute rates of hole transfer in DNA
,”
J. Am. Chem. Soc.
127
,
14894
14903
(
2005
).
37.
P. O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
375
(
1950
).
38.
Y.
Zhang
, “
Applications of Huang–Rhys theory in semiconductor optical spectroscopy
,”
J. Semicond.
40
,
091102
(
2019
).
39.
L.
Gisslén
and
R.
Scholz
, “
Crystallochromy of perylene pigments: Interference between Frenkel excitons and charge-transfer states
,”
Phys. Rev. B
80
,
115309
(
2009
).
40.
R. D.
Harcourt
,
G. D.
Scholes
, and
K. P.
Ghiggino
, “
Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions
,”
J. Chem. Phys.
101
,
10521
10525
(
1994
).
41.
R. D.
Harcourt
,
K. P.
Ghiggino
,
G. D.
Scholes
, and
S.
Speiser
, “
On the origin of matrix elements for electronic excitation (energy) transfer
,”
J. Chem. Phys.
105
,
1897
1901
(
1996
).
42.
L.
Zang
,
Y.
Che
, and
J. S.
Moore
, “
One-dimensional self-assembly of planar π-conjugated molecules: Adaptable building blocks for organic nanodevices
,”
Acc. Chem. Res.
41
,
1596
1608
(
2008
).
43.

Here J stands for induced red shift61 whereas H stands for induced blue shift62 as a result of the aggregation.

44.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
342
(
1959
).
45.
F. C.
Spano
, “
The spectral signatures of Frenkel polarons in H- and J-aggregates
,”
Acc. Chem. Res.
43
,
429
439
(
2010
).
46.
N. J.
Hestand
and
F. C.
Spano
, “
Molecular aggregate photophysics beyond the Kasha model: Novel design principles for organic materials
,”
Acc. Chem. Res.
50
,
341
350
(
2017
).
47.
Z. R.
Tao
,
J. X.
Wu
,
Y. J.
Zhao
,
M.
Xu
,
W. Q.
Tang
,
Q. H.
Zhang
,
L.
Gu
,
D. H.
Liu
, and
Z. Y.
Gu
, “
Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations
,”
Nat. Commun.
10
,
2911
(
2019
).
48.
A.
Kuc
,
M. A.
Springer
,
K.
Batra
,
R.
Juarez‐Mosqueda
,
C.
Wöll
, and
T.
Heine
, “
Proximity effect in crystalline framework materials: Stacking-induced functionality in MOFs and COFs
,”
Adv. Funct. Mater.
30
,
1908004
(
2020
).
49.
P. E.
Hartnett
,
A.
Timalsina
,
H. S. S. R.
Matte
,
N.
Zhou
,
X.
Guo
,
W.
Zhao
,
A.
Facchetti
,
R. P. H.
Chang
,
M. C.
Hersam
,
M. R.
Wasielewski
, and
T. J.
Marks
, “
Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics
,”
J. Am. Chem. Soc.
136
,
16345
16356
(
2014
).
50.
G.
Giri
,
E.
Verploegen
,
S. C. B.
Mannsfeld
,
S.
Atahan-Evrenk
,
D. H.
Kim
,
S. Y.
Lee
,
H. A.
Becerril
,
A.
Aspuru-Guzik
,
M. F.
Toney
, and
Z.
Bao
, “
Tuning charge transport in solution-sheared organic semiconductors using lattice strain
,”
Nature
480
,
504
508
(
2011
).
51.
M.
Guerrini
,
C.
Cocchi
,
A.
Calzolari
,
D.
Varsano
, and
S.
Corni
, “
Interplay between intra- and intermolecular charge transfer in the optical excitations of J-aggregates
,”
J. Phys. Chem. C
123
,
6831
6838
(
2019
).
52.
T.
Chen
,
J.-H.
Dou
,
L.
Yang
,
C.
Sun
,
N. J.
Libretto
,
G.
Skorupskii
,
J. T.
Miller
, and
M.
Dincă
, “
Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF alloys
,”
J. Am. Chem. Soc.
142
,
12367
12373
(
2020
).
53.
K.
Senthilkumar
,
F. C.
Grozema
,
F. M.
Bickelhaupt
, and
L. D. A.
Siebbeles
, “
Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies
,”
J. Chem. Phys.
119
,
9809
9817
(
2003
).
54.
F. C.
Spano
, “
Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexylthiophene) thin films
,”
J. Chem. Phys.
122
,
234701
(
2005
).
55.
M. Z.
Mayers
,
L. Z.
Tan
,
D. A.
Egger
,
A. M.
Rappe
, and
D. R.
Reichman
, “
How lattice and charge fluctuations control carrier dynamics in halide perovskites
,”
Nano Lett.
18
,
8041
8046
(
2018
).
56.
C.
Motta
,
P.
Mandal
, and
S.
Sanvito
, “
Effects of molecular dipole orientation on the exciton binding energy of CH3NH3PbI3
,”
Phys. Rev. B
94
,
045202
(
2016
).
57.
Y.
Cui
,
J.
Yan
,
Z.
Chen
,
W.
Xing
,
C.
Ye
,
X.
Li
,
Y.
Zou
,
Y.
Sun
,
C.
Liu
,
W.
Xu
, and
D.
Zhu
, “
Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties
,”
iScience
23
,
100812
(
2020
).
58.
J.
Even
,
L.
Pedesseau
, and
C.
Katan
, “
Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites
,”
J. Phys. Chem. C
118
,
11566
11572
(
2014
).
59.
J.
Ma
and
L.-W.
Wang
, “
Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3
,”
Nano Lett.
15
,
248
253
(
2015
).
60.
E. R.
Bittner
,
Quantum Dynamics: Applications in Biology and Materials Systems
(
CRC Press
,
Boca Raton, FL
,
2009
).
61.
E. E.
Jelley
, “
Spectral absorption and fluorescence of dyes in the molecular state
,”
Nature
138
,
1009
1010
(
1936
).
62.
C.
Allolio
,
T.
Stangl
,
T.
Eder
,
D.
Schmitz
,
J.
Vogelsang
,
S.
Höger
,
D.
Horinek
, and
J. M.
Lupton
, “
H-aggregation effects between π-conjugated chromophores in cofacial dimers and trimers: Comparison of theory and single-molecule experiment
,”
J. Phys. Chem. B
122
,
6431
6441
(
2018
).

Supplementary Material

You do not currently have access to this content.