The quantum Monte Carlo (QMC) algebraic diagrammatic construction (ADC) method is introduced, which solves the eigenvalue problem of the second-order ADC scheme for the polarization propagator stochastically within the framework of QMC methodology allowing for massively parallel computations. As common virtue of the Monte Carlo integration techniques, quantum Monte Carlo algebraic diagrammatic construction (QMCADC) enables exploitation of the sparsity of the effective ADC matrix, and it reduces the memory requirements by storing only a portion of configurations at each iteration. Furthermore, distributing memory and processing loads to different computing nodes enables the use of fast developing parallel computing resources. Here, the theory and implementation of QMCADC is reported and its viability is demonstrated by the first proof-of-principle calculations. The focus lies on the first excited state and the reproduction of the corresponding lowest vertical excitation energy of various molecular systems. QMCADC is shown to be a genuine stochastic solution of the ADC eigenvalue problem, and exact ADC values can be obtained with a marginal controllable error.

1.
E.
Schwegler
,
M.
Challacombe
, and
M.
Head-Gordon
, “
Linearscaling computation of the Fock matrix. II. Rigorous bounds onexchange integrals and incremental Fock build
,”
J. Chem. Phys.
106
,
9708
9717
(
1997
).
2.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
, “
Linear andsublinear scaling formation of Hartree–Fock–type exchange matrices
,”
J. Chem. Phys.
109
,
1663
1669
(
1998
).
3.
S.
Saebo
and
P.
Pulay
, “
Local Treatment of Electron Correlation
,”
Annu. Rev. Phys. Chem.
44
,
213
236
(
1993
).
4.
M. S.
Lee
,
P. E.
Maslen
, and
M.
Head-Gordon
, “
Closely approximatingsecond–order Møller–Plesset perturbation theory with alocal triatomics in molecules mode
,”
J. Chem. Phys.
112
,
3592
3601
(
2000
).
5.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Scaled opposite-spin second order Møller–Plesset correlation energy:An economical electronic structure method
,”
J. Chem. Phys.
121
,
9793
9802
(
2004
).
6.
D.
Casanova
,
Y. M.
Rhee
, and
M.
Head-Gordon
, “
Quasidegeneratescaled opposite spin second order perturbation correctionsto single excitation configuration interaction
,”
J. Chem. Phys.
128
,
164106
(
2008
).
7.
N. O. C.
Winter
and
C.
Hättig
, “
Scaled opposite-spin CC2 forground and excited states with fourth order scaling computationalcosts
,”
J. Chem. Phys.
134
,
184101
(
2011
).
8.
C. M.
Krauter
,
M.
Pernpointner
, and
A.
Dreuw
, “
Application of thescaled-opposite-spin approximation to algebraic diagrammaticconstruction schemes of second order
,”
J. Chem. Phys.
138
,
044107
(
2013
).
9.
S.
Grimme
and
M.
Waletzke
, “
A combination of Kohn–Shamdensity functional theory and multi-reference configuration interactionmethods
,”
J. Chem. Phys.
111
,
5645
5655
(
1999
).
10.
S.
Grimme
, “
Density functional calculations with configurationinteraction for the excited states of molecules
,”
Chem. Phys. Lett.
259
,
128
137
(
1996
).
11.
W.
Weber
and
W.
Thiel
, “
Orthogonalization corrections forsemiempirical methods
,”
Theor. Chem. Acc.
103
,
495
506
(
2000
).
12.
A.
Koslowski
,
M. E.
Beck
, and
W.
Thiel
, “
Implementation of ageneral multireference configuration interaction procedure withanalytic gradients in a semiempirical context using the graphicalunitary group approach
,”
J. Comput. Chem.
24
,
714
(
2003
).
13.
W.
Thiel
, “
Semiempirical quantum–chemical methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
145
157
(
2014
).
14.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion monte carlowithout fixed nodes : A game of life , death , and annihilationin slater determinant space fermion monte carlo without fixednodes
,”
J. Chem. Phys.
131
,
054106
(
2009
).
15.
K.
Guther
,
R. J.
Anderson
,
N. S.
Blunt
,
N. A.
Bogdanov
,
D.
Cleland
,
N.
Dattani
,
W.
Dobrautz
,
K.
Ghanem
,
P.
Jeszenszki
,
N.
Liebermann
,
G. L.
Manni
,
A. Y.
Lozovoi
,
H.
Luo
,
D.
Ma
,
F.
Merz
,
C.
Overy
,
M.
Rampp
,
P. K.
Samanta
,
L. R.
Schwarz
,
J. J.
Shepherd
,
S. D.
Smart
,
E.
Vitale
,
O.
Weser
,
G. H.
Booth
, and
A.
Alavi
, “
Neci: N-electron configuration interaction with anemphasis on state-of-the-art stochastic methods
,”
J. Chem. Phys.
153
,
034107
(
2020
).
16.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towardsan exact description of electronic wavefunctions in real solids
,”
Nature
493
,
365
(
2013
).
17.
T.
Jiang
,
Y.
Chen
,
N. A.
Bogdanov
,
E.
Wang
,
A.
Alavi
, and
J.
Chen
, “
A full configuration interaction quantum monte carlostudy of sco, tio, and vo molecules
,”
J. Chem. Phys.
154
,
164302
(
2021
).
18.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Communications: Survival of the fittest: Accelerating convergence in fullconfiguration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
19.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
, “
Semistochastic Projector Monte CarloMethod
,”
Phys. Rev. Lett.
109
,
230201
(
2012
).
20.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
, “
Semi-stochastic full configuration interactionquantum Monte Carlo: Developments and application
,”
J. Chem. Phys.
142
,
184107
(
2015
).
21.
K.
Ghanem
,
A. Y.
Lozovoi
, and
A.
Alavi
, “
Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
151
,
224108
(
2019
).
22.
L.
Veis
,
A.
Antalík
,
Ö.
Legeza
,
A.
Alavi
, and
J.
Pittner
, “
Theintricate case of tetramethyleneethane: A full configuration interactionquantum monte carlo benchmark and multireferencecoupled cluster studies
,”
J. Chem. Theory Comput.
14
,
2439
2445
(
2018
).
23.
R. E.
Thomas
,
G. H.
Booth
, and
A.
Alavi
, “
Accurate ab initio calculation of ionization potentials of the first-row transition metals with the configuration-interaction quantum monte carlo technique
,”
Phys. Rev. Lett.
114
,
033001
(
2015
).
24.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
, “
Unbiased reduced density matrices and electronicproperties from full configuration interaction quantum MonteCarlo
,”
J. Chem. Phys.
141
,
244117
(
2014
).
25.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
, “
An explicitlycorrelated approach to basis set incompleteness in full configurationinteraction quantum Monte Carlo
,”
J. Chem. Phys.
137
,
164112
(
2012
).
26.
G. H.
Booth
and
G. K.-L.
Chan
, “
Communication: Excitedstates, dynamic correlation functions and spectral propertiesfrom full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
137
,
191102
(
2012
).
27.
A.
Humeniuk
and
R.
Mitrić
, “
Excited states from quantumMonte Carlo in the basis of Slater determinants
,”
J. Chem. Phys.
141
,
194104
(
2014
).
28.
N. S.
Blunt
,
S. D.
Smart
,
G. H.
Booth
, and
A.
Alavi
, “
Anexcited-state approach within full configuration interaction quantumMonte Carlo
,”
J. Chem. Phys.
143
,
134117
(
2015
).
29.
A. J. W.
Thom
, “
Stochastic Coupled Cluster Theory
,”
Phys. Rev. Lett.
105
,
263004
(
2010
).
30.
J. S.
Spencer
and
A. J. W.
Thom
, “
Developments in stochastic coupledcluster theory: The initiator approximation and applicationto the uniform electron gas
,”
J. Chem. Phys.
144
,
084108
(
2016
).
31.
G. L.
Manni
,
S. D.
Smart
, and
A.
Alavi
, “
Combining theComplete Active Space Self-Consistent Field Method and theFull Configuration Interaction Quantum Monte Carlo within aSuper-CI Framework, with Application to Challenging Metal-Porphyrins
,”
J. Chem. Theory Comput.
12
,
1245
(
2016
).
32.
G.
Li Manni
,
W.
Dobrautz
,
N. A.
Bogdanov
,
K.
Guther
, and
A.
Alavi
, “
Resolution of Low-Energy States in Spin-ExchangeTransition-Metal Clusters: Case Study of Singlet States in[Fe(III) 4 S 4 ] Cubanes
,”
J. Phys. Chem. A
125
,
4727
4740
(
2021
).
33.
O.
Weser
,
L.
Freitag
,
K.
Guther
,
A.
Alavi
, and
G.
Li Manni
, “
Chemical insights into the electronic structure of Fe(II) porphyrinusing FCIQMC, DMRG, and generalized active spaces
,”
Int. J. Quantum Chem.
121
,
e26454
(
2021
).
34.
G.
Li Manni
,
W.
Dobrautz
, and
A.
Alavi
, “
Compression of Spin-Adapted Multiconfigurational Wave Functions in Exchange-Coupled Polynuclear Spin Systems
,”
J. Chem. Theory Comput.
16
,
2202
2215
(
2020
).
35.
N. S.
Blunt
,
T. W.
Rogers
,
J. S.
Spencer
, and
W. M. C.
Foulkes
, “
Density-matrix quantum Monte Carlo method
,”
Phys. Rev. B
89
,
245124
(
2014
).
36.
J.
Schirmer
, “
Beyond the random-phase approximation: A newapproximation scheme for the polarization propagator
,”
Phys. Rev. A
26
,
2395
2416
(
1982
).
37.
J.
Schirmer
, “
Closed-form intermediate representations of manybodypropagators and resolvent matrices
,”
Phys. Rev. A
43
,
4647
4659
(
1991
).
38.
A.
Dreuw
and
M.
Wormit
, “
The algebraic diagrammatic constructionscheme for the polarization propagator for the calculationof excited states
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
95
(
2015
).
39.
A. B.
Trofimov
,
I. L.
Krivdina
,
J.
Weller
, and
J.
Schirmer
, “
Algebraic-diagrammatic construction propagator approach tomolecular response properties
,”
Chem. Phys.
329
,
1
10
(
2006
).
40.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
, “
New approach to the one-particle Green's function for finite Fermi systems
,”
Phys. Rev. A
28
,
1237
1259
(
1983
).
41.
F.
Mertins
and
J.
Schirmer
, “
Algebraic propagator approaches and intermediate-state representations. I. The biorthogonal and unitary coupled-cluster methods
,”
Phys. Rev. A
53
,
2140
2152
(
1996
).
42.
S.
Knippenberg
,
D. R.
Rehn
,
M.
Wormit
,
J. H.
Starcke
,
I. L.
Rusakova
,
A. B.
Trofimov
, and
A.
Dreuw
, “
Calculations of nonlinearresponse properties using the intermediate state representationand the algebraic-diagrammatic construction polarizationpropagator approach: Two-photon absorption spectra
,”
J. Chem. Phys.
136
,
064107
(
2012
).
43.
J.
Schirmer
and
A. B.
Trofimov
, “
Intermediate state representationapproach to physical properties of electronically excitedmolecules
,”
J. Chem. Phys.
120
,
11449
11464
(
2004
).
44.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.4: Open-source software for high-throughput quantumchemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
45.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE:Modular program suite for ab initio quantum-chemicaland condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
46.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
47.
Y.
Shao
 et al., “
Advances in molecular quantum chemistrycontained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
48.
M. F.
Herbst
,
M.
Scheurer
,
T.
Fransson
,
D. R.
Rehn
, and
A.
Dreuw
, “
adcc: A versatile toolkit for rapid development ofalgebraic-diagrammatic construction methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1462
(
2020
).
49.
D. R.
Rehn
,
Z.
Rinkevicius
,
M. F.
Herbst
,
X.
Li
,
M.
Scheurer
,
M.
Brand
,
A. L.
Dempwolff
,
I. E.
Brumboiu
,
T.
Fransson
,
A.
Dreuw
, and
P.
Norman
, “
Gator: A Python-driven programfor spectroscopy simulations using correlated wave functions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1528
(
2021
).
50.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
, “
Electron excitationenergies using a consistent third-order propagator approach:Comparison with full configuration interaction and coupled clusterresults
,”
J. Chem. Phys.
117
,
6402
6410
(
2002
).
51.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
, “
A consistent thirdorderpropagator method for electronic excitation
,”
J. Chem. Phys.
111
,
9982
9999
(
1999
).
52.
J. H.
Starcke
,
M.
Wormit
, and
A.
Dreuw
, “
Unrestricted algebraicdiagrammatic construction scheme of second order for the calculationof excited states of medium-sized and large molecules
,”
J. Chem. Phys.
130
,
024104
(
2009
).
53.
F.
Mertins
,
J.
Schirmer
, and
A.
Tarantelli
, “
Algebraic propagatorapproaches and intermediate-state representations. II. Theequation-of-motion methods for N , N ±1, and N ±2 electrons
,”
Phys. Rev. A
53
,
2153
2168
(
1996
).
54.
J.
Wenzel
,
M.
Wormit
, and
A.
Dreuw
, “
Calculating core-levelexcitations and x-ray absorption spectra of medium-sized closedshellmolecules with the algebraic-diagrammatic constructionscheme for the polarization propagator
,”
J. Comput. Chem.
35
,
1900
1915
(
2014
).
55.
B. L.
Hammond
,
W. A.
Lester
, and
P. J.
Reynolds
,
Monte Carlo Methods in Ab Initio Quantum Chemistry
(
World Scientific
,
1994
).
56.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
(
2001
).
57.
P. J.
Reynolds
,
D. M.
Ceperley
, and
B. J.
Alder
, “
Fixed-node quantum Monte Carlo for molecules
,”
J. Chem. Phys.
77
,
5593
(
1982
).
58.
S.
Zhang
and
H.
Krakauer
, “
Quantum Monte Carlo Method usingPhase-Free Random Walks with Slater Determinants
,”
Phys. Rev. Lett.
90
,
136401
(
2003
).
59.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D.
Pineda Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK : an open source ab initioquantum Monte Carlo package for the electronic structureof atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
,
195901
(
2018
).
60.
L. K.
Wagner
,
M.
Bajdich
, and
L.
Mitas
, “
QWalk: A quantumMonte Carlo program for electronic structure
,”
J. Comput. Phys.
228
,
3390
3404
(
2009
).
61.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
,
P.
López Ríos
, and
J. R.
Trail
, “
Variational and diffusion quantum monte carlo calculationswith the casino code
,”
J. Chem. Phys.
152
,
154106
(
2020
).
62.
J. J.
Shepherd
,
G. E.
Scuseria
, and
J. S.
Spencer
, “
Sign problemin full configuration interaction quantum Monte Carlo: Linearand sublinear representation regimes for the exact wave function
,”
Phys. Rev. B
90
,
155130
(
2014
).
63.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M. C.
Foulkes
, “
The sign problemand population dynamics in the full configuration interactionquantum monte carlo method
,”
J. Chem. Phys.
136
,
054110
(
2012
).
64.
M.
Yang
,
E.
Pahl
, and
J.
Brand
, “
Improved walker populationcontrol for full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
153
,
174103
(
2020
).
65.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages ofcorrelated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
66.
N. E.
Blunt
,
A.
Alavi
, and
G. H.
Booth
, “
Krylov-Projected QuantumMonte Carlo Method
,”
Phys. Rev. Lett.
115
,
050603
(
2015
).
67.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Ko-val
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the pyscf program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).

Supplementary Material

You do not currently have access to this content.