The effect of hyperenhancement of Raman scattering (RS) appearing on microcracks of the metal deposition (silver and gold) of uniaxially stretched polymer track-etched membranes is investigated. Deformation of membranes with a combination of high surface density and small diameter of their pores leads to the development of many microcracks in the metal coating. The efficiency of the surface enhancement RS (SERS) of the synthesized metasurfaces has been investigated on the example of organic compound malachite green, and the possibility to recognize extremely low fractions of the substance was demonstrated. An increase in the SERS signal with an increase in the deformation of the samples and even greater enhancement after their unloading and relaxation were found. The experiment on tensile strain and relaxation of the deformation of the samples and the consequent change in their electrical conductivity confirm the assumption that SERS appears on microcracks edges with a rather small distance between their boundaries. The SERS technique is proposed to analyze the formation of micro- and nanocracks on metal coatings.

1.
W. E.
Moerner
and
L.
Kador
,
Phys. Rev. Lett.
62
,
2535
(
1989
).
2.
M.
Orrit
and
J.
Bernard
,
Phys. Rev. Lett.
65
,
2716
(
1990
).
3.
T.
Basché
 et al.,
Single-Molecule Optical Detection, Imaging and Spectroscopy
(
Wiley-VCH Verlag GmbH
,
Weinheim
,
1996
).
4.
A. B.
Myers
 et al.,
J. Phys. Chem.
98
,
10377
(
2002
).
5.
N. L.
Naumova
 et al.,
Opt. Spectrosc.
98
,
535
(
2005
).
6.
X.
Liu
 et al.,
Sci. Rep.
4
,
5835
(
2014
).
7.
Y.
Zheng
 et al.,
Nat. Commun.
6
,
8797
(
2015
).
8.
M.
Moskovits
,
Rev. Mod. Phys.
57
,
783
(
1985
).
9.
K.
Kneipp
 et al.,
Phys. Rev. Lett.
78
,
1667
(
1997
).
10.
S.
Nie
and
S. R.
Emory
,
Science
275
,
1102
(
1997
).
11.
R. M.
Stöckle
 et al.,
Chem. Phys. Lett.
318
,
131
(
2000
).
12.
W. A.
El-Said
 et al.,
Biosens. Bioelectron.
26
,
1486
(
2010
).
13.
14.
P. A.
Mosier-Boss
,
Nanomaterials
7
,
142
(
2017
).
15.
K. C.
Doty
 et al.,
J. Raman Spectrosc.
47
,
39
(
2016
).
17.
E.
Sheremet
 et al.,
Phys. Chem. Chem. Phys.
17
,
21198
(
2015
).
18.
K. R.
Karimullin
 et al.,
Laser Phys.
29
,
124009
(
2019
).
19.
N.
Leopold
and
B.
Lendl
,
J. Phys. Chem. B
107
,
5723
(
2003
).
20.
B. N.
Khlebtsov
 et al.,
ACS Appl. Mater. Interfaces
7
,
6518
(
2015
).
21.
N. N.
Melnik
,
I. A.
Sherestnev
, and
V. V.
Tregulov
,
Bull. Russ. Acad. Sci.: Phys.
85
,
990
(
2021
).
22.
I. A.
Milekhin
 et al.,
J. Chem. Phys.
153
,
164708
(
2020
).
23.
E. M.
Purcell
,
H. C.
Torrey
, and
R. V.
Pound
,
Phys. Rev.
69
,
37
(
1946
).
24.
A. S.
Kuchianov
 et al.,
Bull. Russ. Acad. Sci.: Phys.
67
,
234
(
2003
).
25.
P. G.
Etchegoin
and
E. C.
Le Ru
,
Phys. Chem. Chem. Phys.
10
,
6079
(
2008
).
26.
C.
Kuttner
,
Plasmonics
(
IntechOpen
,
London, United Kingdom
,
2018
).
27.
D.
Radziuk
and
H.
Moehwald
,
Phys. Chem. Chem. Phys.
17
,
21072
(
2015
).
28.
K.
Bhatnagar
 et al.,
Nanotechnology
23
,
495201
(
2012
).
29.
A. V.
Naumov
 et al.,
Nano Lett.
18
,
6129
(
2018
).
30.
Z.
Starowicz
 et al.,
Colloid Polym. Sci.
296
,
1029
(
2018
).
32.
E. P.
Kozhina
 et al.,
Appl. Sci.
11
,
1375
(
2021
).
33.
E. P.
Kozhina
 et al.,
Bull. Russ. Acad. Sci.: Phys.
84
,
1465
(
2021
).
34.
C. R.
Martin
,
Chem. Mater.
8
,
1739
(
1996
).
35.
C.
Schönenberger
 et al.,
J. Phys. Chem. B
101
,
5497
(
1997
).
36.
S. I.
Kulik
 et al.,
J. Appl. Spectrosc.
85
,
916
(
2018
).
37.
D. C.
Rodrigues
,
G. F. S.
Andrade
, and
M. L. A.
Temperini
,
Phys. Chem. Chem. Phys.
15
,
1169
(
2013
).
38.
O. V.
Kristavchuk
 et al.,
Colloid J.
79
,
637
(
2017
).
39.
G. M.
Ndilowe
 et al.,
Colloid Polym. Sci.
299
,
1729
(
2021
).
40.
K.
Xu
 et al.,
ACS Appl. Mater. Interfaces
9
,
26341
(
2017
).
41.
Y.
Wang
 et al.,
Nanoscale
10
,
15195
(
2018
).
42.
J. S.
Taurozzi
and
V. V.
Tarabara
,
Environ. Eng. Sci.
24
,
122
(
2007
).
43.
A. L.
Volynskii
 et al.,
Polym. Sci., Ser. A
43
,
1008
(
2001
).
44.
A. L.
Volynskii
 et al.,
Polym. Sci., Ser. A
41
,
1627
(
1999
).
45.
S. L.
Bazhenov
 et al.,
Dokl. Phys. Chem.
488
,
117
(
2019
).
46.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Butterworth-Heinemann
,
Oxford
,
1984
).
47.
N. P.
Kovalets
,
Bull. Russ. Acad. Sci.: Phys.
85
,
1404
(
2021
).
49.
Y.
Guo
 et al.,
Opt. Express
26
,
21784
(
2018
).
50.
K.
Li
 et al.,
J. Mater. Chem. C
6
,
4649
(
2018
).
51.
A. J.
Chung
,
Y. S.
Huh
, and
D.
Erickson
,
Nanoscale
3
,
2903
(
2011
).
52.
D.
Paramelle
et al.,
Analyst
139
,
4855
(
2014
).
53.
T.-Y.
Chan
 et al.,
Nanoscale Res. Lett.
12
,
344
(
2017
).
54.
L.
Pei
 et al.,
J. Nanomater.
2014
,
730915
.
55.
F.
Menges
,
Spectragryph
, optical spectroscopy software, version 1.2.15, Oberstdorf,
2020
.
56.
H.
Kitching
,
A. J.
Kenyon
, and
I. P.
Parkin
,
Phys. Chem. Chem. Phys.
16
,
6050
(
2014
).
57.
A. V.
Tobolsky
and
K.
Murakami
,
J. Polym. Sci.
40
,
443
(
1959
).
58.
E. P.
Kozhina
 et al.,
Bull. Russ. Acad. Sci.: Phys.
85
,
1465
(
2021
).
You do not currently have access to this content.