Element doping can have a profound impact on the photoelectrochemical properties of quantum dots (QDs); nevertheless, the hitherto known information in this regard is mainly from the steady-state characterizations and remains lacking input from the dynamics perspective. Herein, we present a systematic scrutiny of the element doping-induced effects in Zn-doped CdTe QDs. By means of steady-state/time-resolved/temperature-dependent photoluminescence spectroscopy and ultrafast transient absorption spectroscopy, we reveal that the slight Zn-doping in CdTe QDs can greatly affect the involved carrier relaxation dynamics through a density-of-state modification for both near-band-edge and localized surface trap states. Furthermore, such slight doping is found to be quite significant in modulating the photoreduction efficiency (of particular relation to the localized surface trap states) as well as altering the involved relaxation/reaction activation energy and phonon effect in this QDs system. This work enriches our fundamental understanding of the element doping-induced surface/interface effects, from the dynamics perspective in particular, and, hence, offers helpful guidance for QDs-based photoelectrochemical design and optimization.

1.
X.-B.
Li
,
C.-H.
Tung
, and
L.-Z.
Wu
,
Nat. Rev. Chem.
2
,
160
173
(
2018
).
2.
H.
Jung
,
N.
Ahn
, and
V. I.
Klimov
,
Nat. Photonics
15
,
643
655
(
2021
).
3.
G.
Konstantatos
,
I.
Howard
,
A.
Fischer
,
S.
Hoogland
,
J.
Clifford
,
E.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Nature
442
,
180
183
(
2006
).
4.
X.
Lan
,
S.
Masala
, and
E. H.
Sargent
,
Nat. Mater.
13
,
233
240
(
2014
).
5.
S. K.
Panda
,
S. G.
Hickey
,
H. V.
Demir
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
50
,
4432
4436
(
2011
).
6.
C.
Pu
,
H.
Qin
,
Y.
Gao
,
J.
Zhou
,
P.
Wang
, and
X.
Peng
,
J. Am. Chem. Soc.
139
,
3302
3311
(
2017
).
7.
D. B.
Straus
,
E. D.
Goodwin
,
E. A.
Gaulding
,
S.
Muramoto
,
C. B.
Murray
, and
C. R.
Kagan
,
J. Phys. Chem. Lett.
6
,
4605
4609
(
2015
).
8.
C.
Giansante
and
I.
Infante
,
J. Phys. Chem. Lett.
8
,
5209
5215
(
2017
).
9.
J.
Wang
,
T.
Xia
,
L.
Wang
,
X.
Zheng
,
Z.
Qi
,
C.
Gao
,
J.
Zhu
,
Z.
Li
,
H.
Xu
, and
Y.
Xiong
,
Angew. Chem., Int. Ed.
57
,
16447
16451
(
2018
).
10.
J. M.
Luther
,
P. K.
Jain
,
T.
Ewers
, and
A. P.
Alivisatos
,
Nat. Mater.
10
,
361
366
(
2011
).
11.
N.
Pradhan
,
S.
Das Adhikari
,
A.
Nag
, and
D. D.
Sarma
,
Angew. Chem., Int. Ed.
56
,
7038
7054
(
2017
).
12.
D. W.
Su
,
J.
Ran
,
Z. W.
Zhuang
,
C.
Chen
,
S. Z.
Qiao
,
Y. D.
Li
, and
G. X.
Wang
,
Sci. Adv.
6
,
eaaz8447
(
2020
).
13.
V.
Chikan
,
J. Phys. Chem. Lett.
2
,
2783
2789
(
2011
).
14.
P.
Arunkumar
,
K. H.
Gil
,
S.
Won
,
S.
Unithrattil
,
Y. H.
Kim
,
H. J.
Kim
, and
W. B.
Im
,
J. Phys. Chem. Lett.
8
,
4161
4166
(
2017
).
15.
D. A.
Wheeler
and
J. Z.
Zhang
,
Adv. Mater.
25
,
2878
2896
(
2013
).
16.
S.
Bai
,
J.
Jiang
,
Q.
Zhang
, and
Y.
Xiong
,
Chem. Soc. Rev.
44
,
2893
2939
(
2015
).
17.
Q.
Zhang
and
Y.
Luo
,
High Power Laser Sci. Eng.
4
,
e22
(
2016
).
18.
H.
Zhu
,
Y.
Yang
,
K.
Wu
, and
T.
Lian
,
Annu. Rev. Phys. Chem.
67
,
259
281
(
2016
).
19.
W.
Li
,
J.
Liu
,
K.
Sun
,
H.
Dou
, and
K.
Tao
,
J. Mater. Chem.
20
,
2133
2138
(
2010
).
20.
S. C.
Boehme
,
J. M.
Azpiroz
,
Y. V.
Aulin
,
F. C.
Grozema
,
D.
Vanmaekelbergh
,
L. D. A.
Siebbeles
,
I.
Infante
, and
A. J.
Houtepen
,
Nano Lett.
15
,
3056
3066
(
2015
).
21.
L.
Zhang
,
Q.
Zhang
, and
Y.
Luo
,
J. Phys. Chem. Lett.
8
,
5680
5686
(
2017
).
22.
R.
Begum
,
M. R.
Parida
,
A. L.
Abdelhady
,
B.
Murali
,
N. M.
Alyami
,
G. H.
Ahmed
,
M. N.
Hedhili
,
O. M.
Bakr
, and
O. F.
Mohammed
,
J. Am. Chem. Soc.
139
,
731
737
(
2017
).
23.
G. K.
Grandhi
,
K.
Swathi
,
K. S.
Narayan
, and
R.
Viswanatha
,
J. Phys. Chem. Lett.
5
,
2382
2389
(
2014
).
24.
K. E.
Knowles
,
K. H.
Hartstein
,
T. B.
Kilburn
,
A.
Marchioro
,
H. D.
Nelson
,
P. J.
Whitham
, and
D. R.
Gamelin
,
Chem. Rev.
116
,
10820
10851
(
2016
).
25.
A. L.
Weaver
and
D. R.
Gamelin
,
J. Am. Chem. Soc.
134
,
6819
6825
(
2012
).
26.
J.
Mooney
,
M. M.
Krause
,
J. I.
Saari
, and
P.
Kambhampati
,
Phys. Rev. B
87
,
081201
(
2013
).
27.
D.
Valerini
,
A.
Cretí
,
M.
Lomascolo
,
L.
Manna
,
R.
Cingolani
, and
M.
Anni
,
Phys. Rev. B
71
,
235409
(
2005
).
28.
S. K.
Haram
,
A.
Kshirsagar
,
Y. D.
Gujarathi
,
P. P.
Ingole
,
O. A.
Nene
,
G. B.
Markad
, and
S. P.
Nanavati
,
J. Phys. Chem. C
115
,
6243
6249
(
2011
).
29.
V. I.
Klimov
,
J. Phys. Chem. B
104
,
6112
6123
(
2000
).
30.
S.
Maiti
,
T.
Debnath
,
P.
Maity
, and
H. N.
Ghosh
,
J. Phys. Chem. C
119
,
8410
8416
(
2015
).
31.
P.
Guyot-Sionnest
,
M.
Shim
,
C.
Matranga
, and
M.
Hines
,
Phys. Rev. B
60
,
R2181
(
1999
).
32.
L.
Dworak
,
V. V.
Matylitsky
,
V. V.
Breus
,
M.
Braun
,
T.
Basché
, and
J.
Wachtveitl
,
J. Phys. Chem. C
115
,
3949
3955
(
2011
).
33.
G.
Morello
,
M.
De Giorgi
,
S.
Kudera
,
L.
Manna
,
R.
Cingolani
, and
M.
Anni
,
J. Phys. Chem. C
111
,
5846
5849
(
2007
).
34.
L.
Wang
,
Z.
Chen
,
G.
Liang
,
Y.
Li
,
R.
Lai
,
T.
Ding
, and
K.
Wu
,
Nat. Commun.
10
,
4532
(
2019
).

Supplementary Material

You do not currently have access to this content.