Singlet fission is a highly desired process in organic photovoltaic devices. It splits one singlet exciton into two triplet excitons and enhances the power-conversion efficiency. However, the exploitation of this process in photovoltaic devices is plagued by the small number of singlet fission chromophores. In this work, we designed a series of singlet fission chromophores by introducing N-oxyl fragments into anthracene. The diradical character brought by the N-oxyl fragments and the structural reorganizations in response to excitation to the lowest triplet state allow some of the investigated molecules to satisfy the thermodynamic energy criteria for singlet fission chromophores.

1.
M. B.
Smith
and
J.
Michl
,
Chem. Rev.
110
,
6891
(
2010
).
2.
M. B.
Smith
and
J.
Michl
,
Annu. Rev. Phys. Chem.
64
,
361
(
2013
).
4.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
5.
M. C.
Hanna
and
A. J.
Nozik
,
J. Appl. Phys.
100
,
074510
(
2006
).
6.
K. C.
Krishnapriya
,
A. J.
Musser
, and
S.
Patil
,
ACS Energy Lett.
4
,
192
(
2019
).
7.
A.
Japahuge
and
T.
Zeng
,
ChemPlusChem
83
,
146
(
2018
).
9.
S.
Ito
,
T.
Nagami
, and
M.
Nakano
,
J. Photochem. Photobiol., C
34
,
85
(
2018
).
10.
J.
Xia
 et al.,
Adv. Mater.
29
,
1601652
(
2017
).
11.
T.
Zeng
,
R.
Hoffmann
, and
N.
Ananth
,
J. Am. Chem. Soc.
136
,
5755
(
2014
).
12.
E. G.
Fuemmeler
 et al.,
ACS Cent. Sci.
2
,
316
(
2016
).
13.
I.
Paci
 et al.,
J. Am. Chem. Soc.
128
,
16546
(
2006
).
14.
T.
Minami
,
S.
Ito
, and
M.
Nakano
,
J. Phys. Chem. Lett.
3
,
2719
(
2012
).
15.
S.
Ito
,
T.
Minami
, and
M.
Nakano
,
J. Phys. Chem. C
116
,
19729
(
2012
).
16.
T.
Minami
and
M.
Nakano
,
J. Phys. Chem. Lett.
3
,
145
(
2012
).
17.
T.
Minami
,
S.
Ito
, and
M.
Nakano
,
J. Phys. Chem. Lett.
4
,
2133
(
2013
).
18.
M.
Nakano
 et al.,
Phys. Rev. Lett.
99
,
033001
(
2007
).
19.
D.
Padula
,
Ö. H.
Omar
,
T.
Nematiaram
, and
A.
Troisi
,
Energy Environ. Sci.
12
,
2412
(
2019
).
20.
J.
Wen
,
Z.
Havlas
, and
J.
Michl
,
J. Am. Chem. Soc.
137
,
165
(
2015
).
21.
A.
Akdag
,
Z.
Havlas
, and
J.
Michl
,
J. Am. Chem. Soc.
134
,
14624
(
2012
).
22.
T.
Zeng
,
N.
Ananth
, and
R.
Hoffmann
,
J. Am. Chem. Soc.
136
,
12638
(
2014
).
23.
T.
Zeng
and
P.
Goel
,
J. Phys. Chem. Lett.
7
,
1351
(
2016
).
24.
25.
T.
Zeng
 et al.,
J. Phys. Chem. Lett.
9
,
2919
(
2018
).
26.
A.
Japahuge
,
S.
Lee
,
C. H.
Choi
, and
T.
Zeng
,
J. Chem. Phys.
150
,
234306
(
2019
).
27.
E.
Pradhan
,
J. N.
Bentley
,
C. B.
Caputo
, and
T.
Zeng
,
ChemPhotoChem
4
,
5279
(
2020
).
28.
O.
El Bakouri
,
J. R.
Smith
, and
H.
Ottosson
,
J. Am. Chem. Soc.
142
,
5602
(
2020
).
29.
K. J.
Fallon
 et al.,
J. Am. Chem. Soc.
141
,
13867
(
2019
).
30.
M.
Baranac-Stojanović
,
J. Org. Chem.
84
,
13582
(
2019
).
31.
S.
Ito
and
M.
Nakano
,
J. Phys. Chem. C
119
,
148
(
2015
).
32.
E.
Pradhan
,
S.
Lee
,
C. H.
Choi
, and
T.
Zeng
,
J. Phys. Chem. A
124
,
8159
(
2020
).
33.
H. G.
Viehe
,
Z.
Janousek
,
R.
Merenyi
, and
L.
Stella
,
Acc. Chem. Res.
18
,
148
(
1985
).
34.
D. J.
Pasto
,
J. Am. Chem. Soc.
110
,
8164
(
1988
).
35.
T.
Nagami
,
R.
Sugimori
,
R.
Sakai
,
K.
Okada
, and
M.
Nakano
,
J. Phys. Chem. A
125
,
3257
(
2021
).
36.
E.
Heilbronner
and
H.
Bock
,
The HMO-Model and its Application, Basis and Manipulation
(
Verlag Chemie, GmbH
,
Weinheim
,
1968
).
37.
S.
Singh
,
W. J.
Jones
,
W.
Siebrand
,
B. P.
Stoicheff
, and
W. G.
Schneider
,
J. Chem. Phys.
42
,
330
(
1965
).
38.
J. E.
Anthony
,
Chem. Rev.
106
,
5028
(
2006
).
39.
J. E.
Anthony
,
Angew. Chem., Int. Ed.
47
,
452
(
2008
).
40.
J. E.
Nutting
,
M.
Rafiee
, and
S. S.
Stahl
,
Chem. Rev.
118
,
4834
(
2018
).
41.
A. D.
Becke
,
J. Chem. Phys.
96
,
2155
(
1992
).
42.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
43.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
44.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
45.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
350
,
297
(
2001
).
46.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
47.
E. M.
Koldasheva
,
V. V.
Strelets
,
Y. V.
Geletii
,
A. F.
Shestakov
, and
Y.-K.
Tse
,
Russ. Chem. Bull.
45
,
1889
(
1996
).
48.
H.
Nakano
,
R.
Uchiyama
, and
K.
Hirao
,
J. Comput. Chem.
23
,
1166
(
2002
).
49.
M.
Miyajima
,
Y.
Watanabe
, and
H.
Nakano
,
J. Chem. Phys.
124
,
044101
(
2006
).
50.
R.
Ebisuzaki
,
Y.
Watanabe
, and
H.
Nakano
,
Chem. Phys. Lett.
442
,
164
(
2007
).
51.
M. W.
Schmidt
 et al.,
J. Comput. Chem.
14
,
1347
(
1993
).
52.
M. S.
Gordon
and
M. W.
Schmidt
, in
Advances in Electronic Structure Theory: GAMESS a Decade Later
(
Elsevier
,
Amsterdam
,
2005
), Chap. 41, pp.
1167
1189
.
53.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
54.
J.
Lee
 et al.,
Acc. Chem. Res.
46
,
1300
(
2013
).
55.
P.
Würfel
,
Physics of Solar Cells: From Basic Principles to Advanced Concepts
(
Wiley-VCH Verlag
,
Weinheim
,
2009
).
56.
S. K.
Lower
and
M. A.
El-Sayed
,
Chem. Rev.
66
,
199
(
1966
).
57.
M. A.
El-Sayed
,
Acc. Chem. Res.
1
,
8
(
1968
).
58.
P.
Pokhilko
and
A. I.
Krylov
,
J. Phys. Chem. Lett.
10
,
4857
(
2019
).
59.
K.
Bhattacharyya
and
A.
Datta
,
J. Phys. Chem. C
121
,
1412
(
2017
).
60.
Y. J.
Bae
 et al.,
J. Chem. Phys.
151
,
044501
(
2019
).
61.
T.
Nagami
 et al.,
J. Phys. Chem. C
124
,
11800
(
2020
).
62.
J.
Stoycheva
 et al.,
J. Phys. Chem. Lett.
11
,
1390
(
2020
).
63.
X.
Shi
,
J. S.
Poole
,
I.
Emenike
,
G.
Burdzinski
, and
M. S.
Platz
,
J. Phys. Chem. A
109
,
1491
(
2005
).
64.
E. Ö.
Viktorsson
 et al.,
RSC Med. Chem.
12
,
767
(
2021
).
65.
P.
Veerakumar
,
S.
Balakumar
,
M.
Velayudham
,
K.-L.
Lu
, and
S.
Rajagopal
,
Catal. Sci. Technol.
2
,
1140
(
2012
).
66.
We did structure searches for the 2N-containing precursor reactants in Fig. 3. Figures 7(b)7(f) on http://scifinder.cas.org/. Those in Figs. 7(b)7(e) were found to be synthesized already.

Supplementary Material

You do not currently have access to this content.