Atomic fingerprints are commonly used for the characterization of local environments of atoms in machine learning and other contexts. In this work, we study the behavior of two widely used fingerprints, namely, the smooth overlap of atomic positions (SOAP) and the atom-centered symmetry functions (ACSFs), under finite changes of atomic positions and demonstrate the existence of manifolds of quasi-constant fingerprints. These manifolds are found numerically by following eigenvectors of the sensitivity matrix with quasi-zero eigenvalues. The existence of such manifolds in ACSF and SOAP causes a failure to machine learn four-body interactions, such as torsional energies that are part of standard force fields. No such manifolds can be found for the overlap matrix (OM) fingerprint due to its intrinsic many-body character.

1.
M.
Eickenberg
,
G.
Exarchakis
,
M.
Hirn
,
S.
Mallat
, and
L.
Thiry
,
J. Chem. Phys.
148
,
241732
(
2018
).
2.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
,
J. Chem. Phys.
152
,
044107
(
2020
).
3.
J. S.
Smith
,
R.
Zubatyuk
,
B.
Nebgen
,
N.
Lubbers
,
K.
Barros
,
A. E.
Roitberg
,
O.
Isayev
, and
S.
Tretiak
,
Sci. Data
7
,
134
(
2020
).
4.
M.-P. V.
Christiansen
,
H. L.
Mortensen
,
S. A.
Meldgaard
, and
B.
Hammer
,
J. Chem. Phys.
153
,
044107
(
2020
).
5.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
6.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
,
J. Chem. Phys.
148
,
241709
(
2018
).
7.
S.
Jindal
,
S.
Chiriki
, and
S. S.
Bulusu
,
J. Chem. Phys.
146
,
204301
(
2017
).
8.
J.
Jenke
,
A. P. A.
Subramanyam
,
M.
Densow
,
T.
Hammerschmidt
,
D. G.
Pettifor
, and
R.
Drautz
,
Phys. Rev. B
98
,
144102
(
2018
).
9.
A. V.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
10.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
11.
E.
Kocer
,
J. K.
Mason
, and
H.
Erturk
,
J. Chem. Phys.
150
,
154102
(
2019
).
12.
M.
Rupp
,
R.
Ramakrishnan
, and
O. A.
Von Lilienfeld
,
J. Phys. Chem. Lett.
6
,
3309
(
2015
).
13.
B.
Huang
and
O. A.
von Lilienfeld
, “
Quantum machine learning using atom-in-molecule-based fragments selected on-the-fly
,”
Nature Chemistry
12
(
10
),
945
–951 (
2020
).
14.
T. D.
Huan
,
R.
Batra
,
J.
Chapman
,
C.
Kim
,
A.
Chandrasekaran
, and
R.
Ramprasad
,
J. Phys. Chem. C
123
,
20715
(
2019
).
15.
M. F.
Langer
,
A.
Goeßmann
, and
M.
Rupp
, arXiv:2003.12081 (
2020
).
16.
C.
Poelking
,
F. A.
Faber
, and
B.
Cheng
, arXiv:2112.02287 (
2021
).
17.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
18.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
19.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
20.
L.
Zhu
,
M.
Amsler
,
T.
Fuhrer
,
B.
Schaefer
,
S.
Faraji
,
S.
Rostami
,
S. A.
Ghasemi
,
A.
Sadeghi
,
M.
Grauzinyte
,
C.
Wolverton
 et al.,
J. Chem. Phys.
144
,
034203
(
2016
).
21.
A.
Sadeghi
,
S. A.
Ghasemi
,
B.
Schaefer
,
S.
Mohr
,
M. A.
Lill
, and
S.
Goedecker
,
J. Chem. Phys.
139
,
184118
(
2013
).
22.
J. E.
Moussa
,
Phys. Rev. Lett.
109
,
059801
(
2012
).
23.
N.
Bernstein
,
G.
Csanyi
, and
J.
Kermode
, “
Quip and quippy documentation
,” http://libatoms.github.io/QUIP/.
24.
S. N.
Pozdnyakov
,
M. J.
Willatt
,
A. P.
Bartók
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
125
,
166001
(
2020
).
25.
B.
Parsaeifard
,
D.
Sankar De
,
A. S.
Christensen
,
F. A.
Faber
,
E.
Kocer
,
S.
De
,
J.
Behler
,
O.
Anatole von Lilienfeld
, and
S.
Goedecker
,
Mach. Learn.: Sci. Technol.
2
,
015018
(
2021
).
26.
J.
Behler
and
G.
Csányi
,
Eur. Phys. J. B
94
,
142
(
2021
).
27.
S. N.
Pozdnyakov
,
L.
Zhang
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
, “
Local invertibility and sensitivity of atomic structure-feature mappings
,”
Open Research Europe
1
,
126
(
2021
).
28.
A.
Paszke
,
S.
Gross
,
S.
Chintala
,
G.
Chanan
,
E.
Yang
,
Z.
DeVito
,
Z.
Lin
,
A.
Desmaison
,
L.
Antiga
, and
A.
Lerer
, “
PyTorch: An imperative style, high-performance deep learning library
,”
Advances in Neural Information Processing Systems 32
, edited by ,
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alche-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates
,
New York
), pp.
8024
8035
; available at http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
29.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, in
Advances in Neural Information Processing Systems 32
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), pp.
8024
8035
.
30.
D. P.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
31.
M.
Babaei
,
Y. T.
Azar
, and
A.
Sadeghi
,
Phys. Rev. B
101
,
115132
(
2020
).
32.
O.
Schütt
and
J.
VandeVondele
,
J. Chem. Theory Comput.
14
,
4168
(
2018
).
You do not currently have access to this content.