Commercial titania photocatalysts were modified with silver nanoparticles (NPs) by the photodeposition method in the presence/absence of methanol. The obtained photocatalysts were characterized by XRD, XPS, diffuse reflectance spectroscopy, STEM, and time-resolved microwave conductivity (TRMC) methods. The photocatalytic activity was tested under UV/vis irradiation for (i) methanol dehydrogenation (during silver deposition), (ii) oxygen evolution with in situ silver deposition, and (iii) oxidative decomposition of acetic acid, as well as under vis irradiation for 2-propanol oxidation. The action spectra of 2-propanol oxidation were also performed. It has been confirmed that modification of titania with silver causes significant improvement of photocatalytic activity under both UV and vis irradiation as silver works as an electron scavenger (TRMC data) and vis activator (possibly by an energy transfer mechanism). The obtained activities differ between titania samples significantly, suggesting that the type of crystalline phase, particle/crystallite sizes, and electron traps’ density are crucial for both the properties of formed silver deposits and resultant photocatalytic activity. It might be concluded that, under UV irradiation, (i) high crystallinity and large specific surface area are recommended for rutile- and anatase-rich samples, respectively, during hydrogen evolution, (ii) mixed crystalline phases cause a high rate of oxygen evolution from water, and (iii) anatase phase with fine silver NPs results in efficient decomposition of acetic acid, whereas under vis irradiation the aggregated silver NPs (broad localized surface plasmon resonance peak) on the rutile phase are promising for oxidation reactions.

1.
K.
Nakata
and
A.
Fujishima
,
J. Photochem. Photobiol., C
13
(
3
),
169
189
(
2012
).
2.
K.
Wang
,
M.
Janczarek
,
Z.
Wei
,
T.
Raja-Mogan
,
M.
Endo-Kimura
,
T. M.
Khedr
,
B.
Ohtani
, and
E.
Kowalska
,
Catalysts
9
(
12
),
1054
(
2019
).
3.
A.
Markowska-Szczupak
,
M.
Endo-Kimura
,
O.
Paszkiewicz
, and
E.
Kowalska
,
Nanomaterials
10
(
10
),
2065
(
2020
).
4.
B.
Tryba
,
T.
Tsumura
,
M.
Janus
,
A. W.
Morawski
, and
M.
Inagaki
,
Appl. Catal., B
50
(
3
),
177
183
(
2004
).
5.
E.
Kowalska
,
H.
Remita
,
C.
Colbeau-Justin
,
J.
Hupka
, and
J.
Belloni
,
J. Phys. Chem. C
112
(
4
),
1124
1131
(
2008
).
6.
H.
Kisch
,
S.
Sakthivel
,
M.
Janczarek
, and
D.
Mitoraj
,
J. Phys. Chem. C
111
(
30
),
11445
11449
(
2007
).
7.
R.
Asahi
,
T.
Morikawa
,
T.
Ohwaki
,
K.
Aoki
, and
Y.
Taga
,
Science
293
(
5528
),
269
271
(
2001
).
8.
T.
Ohno
,
T.
Mitsui
, and
M.
Matsumura
,
Chem. Lett.
32
(
4
),
364
365
(
2003
).
9.
A.
Zaleska
,
Recent Pat. Eng.
2
,
157
164
(
2008
).
10.
K.
Wang
,
Z.
Bielan
,
M.
Endo-Kimura
,
M.
Janczarek
,
D.
Zhang
,
D.
Kowalski
,
A.
Zielińska-Jurek
,
A.
Markowska-Szczupak
,
B.
Ohtani
, and
E.
Kowalska
,
J. Mater. Chem. A
9
(
16
),
10135
10145
(
2021
).
11.
M.
Janczarek
,
M.
Endo
,
D.
Zhang
,
K.
Wang
, and
E.
Kowalska
,
Materials
11
,
2069
(
2018
).
12.
Z.
Wang
,
T.
Hu
,
H.
He
,
Y.
Fu
,
X.
Zhang
,
J.
Sun
,
L.
Xing
,
B.
Liu
,
Y.
Zhang
, and
X.
Xue
,
ACS Sustainable Chem. Eng.
6
(
8
),
10162
10172
(
2018
).
13.
Z. S.
Wei
,
M.
Endo-Kimura
,
K. L.
Wang
,
C.
Colbeau-Justin
, and
E.
Kowalska
,
Nanomaterials
9
(
10
),
E1447
(
2019
).
14.
F.
Amano
,
O.-O.
Prieto-Mahaney
,
Y.
Terada
,
T.
Yasumoto
,
T.
Shibayama
, and
B.
Ohtani
,
Chem. Mater.
21
(
13
),
2601
2603
(
2009
).
15.
D.
Kowalski
,
D.
Kim
, and
P.
Schmuki
,
Nano Today
8
(
3
),
235
264
(
2013
).
16.
B.
Kraeutler
and
A. J.
Bard
,
J. Am. Chem. Soc.
100
,
4317
4318
(
1978
).
17.
P.
Pichat
,
J. M.
Herrmann
,
J.
Disdier
,
H.
Courbon
, and
M. N.
Mozzanega
,
Nouv. J. Chim.
5
(
12
),
627
636
(
1981
).
18.
B.
Ohtani
,
H.
Osaki
,
S.
Nishimoto
, and
T.
Kagiya
,
J. Am. Chem. Soc.
108
(
2
),
308
310
(
1986
).
19.
Y.
Tian
and
T.
Tatsuma
,
J. Am. Chem. Soc.
127
(
20
),
7632
7637
(
2005
).
20.
S. W.
Verbruggen
,
J. Photochem. Photobiol., C
24
,
64
82
(
2015
).
21.
P. A.
DeSario
,
J. J.
Pietron
,
D. E.
DeVantier
,
T. H.
Brintlinger
,
R. M.
Stroud
, and
D. R.
Rolison
,
Nanoscale
5
(
17
),
8073
8083
(
2013
).
22.
E.
Kowalska
,
R.
Abe
, and
B.
Ohtani
,
Chem. Commun.
2009
(
2
),
241
243
.
23.
Z.
Wei
,
M.
Janczarek
,
K.
Wang
,
S.
Zheng
, and
E.
Kowalska
,
Catalysts
10
(
9
),
1070
(
2020
).
24.
E.
Kowalska
,
S.
Rau
, and
B.
Ohtani
,
J. Nanotechnol.
2012
,
1
11
.
25.
S. W.
Verbruggen
,
M.
Keulemans
,
B.
Goris
,
N.
Blommaerts
,
S.
Bals
,
J. A.
Martens
, and
S.
Lenaerts
,
Appl. Catal., B
188
,
147
153
(
2016
).
26.
A.
Furube
,
L.
Du
,
K.
Hara
,
R.
Katoh
, and
M.
Tachiya
,
J. Am. Chem. Soc.
129
(
48
),
14852
14853
(
2007
).
27.
E.
Kowalska
,
O. O. P.
Mahaney
,
R.
Abe
, and
B.
Ohtani
,
Phys. Chem. Chem. Phys.
12
(
10
),
2344
2355
(
2010
).
28.
M.
Endo-Kimura
,
B.
Karabiyik
,
K.
Wang
,
Z.
Wei
,
B.
Ohtani
,
A.
Markowska-Szczupak
, and
E.
Kowalska
,
Catalysts
10
(
10
),
1194
(
2020
).
29.
E.
Kowalska
,
Z.
Wei
,
B.
Karabiyik
,
A.
Herissan
,
M.
Janczarek
,
M.
Endo
,
A.
Markowska-Szczupak
,
H.
Remita
, and
B.
Ohtani
,
Catal. Today
252
,
136
142
(
2015
).
30.
N.
Sakai
,
Y.
Fujiwara
,
Y.
Takahashi
, and
T.
Tatsuma
,
ChemPhysChem
10
,
766
769
(
2009
).
31.
W.
Hou
,
W. H.
Hung
,
P.
Pavaskar
,
A.
Goeppert
,
M.
Aykol
, and
S. B.
Cronin
,
ACS Catal.
1
(
8
),
929
936
(
2011
).
32.
A. M.
Pennington
,
C. L.
Pitman
,
P. A.
DeSario
,
T. H.
Brintlinger
,
S.
Jeon
,
R. B.
Balow
,
J. J.
Pietron
,
R. M.
Stroud
, and
D. R.
Rolison
,
ACS Catal.
10
(
24
),
14834
14846
(
2020
).
33.
D. B.
Ingram
and
S.
Linic
,
J. Am. Chem. Soc.
133
,
5202
5205
(
2011
).
34.
D. B.
Ingram
,
P.
Christopher
,
J. L.
Bauer
, and
S.
Linic
,
ACS Catal.
1
(
10
),
1441
1447
(
2011
).
35.
Y.
Horiguchi
,
T.
Kanda
,
K.
Torigoe
,
H.
Sakai
, and
M.
Abe
,
Langmuir
30
(
3
),
922
928
(
2014
).
36.
Z.
Wei
,
M.
Janczarek
,
M.
Endo
,
K.
Wang
,
A.
Balčytis
,
A.
Nitta
,
M. G.
Méndez-Medrano
,
C.
Colbeau-Justin
,
S.
Juodkazis
,
B.
Ohtani
, and
E.
Kowalska
,
Appl. Catal., B
237
,
574
587
(
2018
).
37.
Z.
Wei
,
M.
Endo
,
K.
Wang
,
E.
Charbit
,
A.
Markowska-Szczupak
,
B.
Ohtani
, and
E.
Kowalska
,
Chem. Eng. J.
318
,
121
134
(
2017
).
38.
M.
Janczarek
,
Z.
Wei
,
M.
Endo
,
B.
Ohtani
, and
E.
Kowalska
,
J. Photonics Energy
7
(
1
),
1
16
(
2017
).
39.
M.
Janczarek
and
E.
Kowalska
,
Catalysts
7
(
11
),
317
(
2017
).
40.
O.-O.
Prieto-Mahaney
,
N.
Murakami
,
R.
Abe
, and
B.
Ohtani
,
Chem. Lett.
38
(
3
),
238
239
(
2009
).
41.
A.
Nitta
,
M.
Takashima
,
M.
Takase
, and
B.
Ohtani
,
Catal. Today
321–322
,
2
8
(
2019
).
42.
Y.-F.
Li
,
Z.-P.
Liu
,
L.
Liu
, and
W.
Gao
,
J. Am. Chem. Soc.
132
(
37
),
13008
13015
(
2010
).
43.
B.
Ohtani
,
O. O.
Prieto-Mahaney
,
D.
Li
, and
R.
Abe
,
J. Photochem. Photobiol., A
216
(
2–3
),
179
182
(
2010
).
44.
S.
Takeuchi
,
M.
Takashima
,
M.
Takase
, and
B.
Ohtani
,
Chem. Lett.
47
(
3
),
373
376
(
2018
).
45.
M. J.
Sampaio
,
Z.
Yu
,
J. C.
Lopes
,
P. B.
Tavares
,
C. G.
Silva
,
L.
Liu
, and
J. L.
Faria
,
Sci. Rep.
11
(
1
),
21306
(
2021
).
46.
R.
Abe
,
K.
Sayama
, and
H.
Sugihara
,
J. Phys. Chem. B
109
(
33
),
16052
16061
(
2005
).
47.
T.
Ohno
,
K.
Sarukawa
, and
M.
Matsumura
,
J. Phys. Chem. B
105
(
12
),
2417
2420
(
2001
).
48.
Y.
Kakuma
,
A. Y.
Nosaka
, and
Y.
Nosaka
,
Phys. Chem. Chem. Phys.
17
(
28
),
18691
18698
(
2015
).
49.
K.
Wang
,
Z.
Wei
,
B.
Ohtani
, and
E.
Kowalska
,
Catal. Today
303
,
327
333
(
2018
).
50.
D.
Paramelle
,
A.
Sadovoy
,
S.
Gorelik
,
P.
Free
,
J.
Hobley
, and
D. G.
Fernig
,
Analyst
139
(
19
),
4855
4861
(
2014
).
51.
S.
Mukherji
,
S.
Bharti
,
G.
Shukla
, and
S.
Mukherji
,
Phys. Sci. Rev.
4
(
1
),
20170082
(
2019
).
52.
B. K.
Min
,
W. T.
Wallace
, and
D. W.
Goodman
,
Surf. Sci.
600
,
L7
(
2006
).
53.
N.
Murakami
,
O. O.
Prieto Mahaney
,
R.
Abe
,
T.
Torimoto
, and
B.
Ohtani
,
J. Phys. Chem. C
111
(
32
),
11927
11935
(
2007
).
54.
A.
Nitta
,
M.
Takase
,
M.
Takashima
,
N.
Murakami
, and
B.
Ohtani
,
Chem. Commun.
52
(
81
),
12096
12099
(
2016
).
55.
M. G.
Méndez-Medrano
,
E.
Kowalska
,
A.
Lehoux
,
A.
Herissan
,
B.
Ohtani
,
D.
Bahena
,
V.
Briois
,
C.
Colbeau-Justin
,
J. L.
Rodríguez-López
, and
H.
Remita
,
J. Phys. Chem. C
120
,
5143
5154
(
2016
).
56.
M.
Endo-Kimura
,
M.
Janczarek
,
Z.
Bielan
,
D.
Zhang
,
K.
Wang
,
A.
Markowska-Szczupak
, and
E.
Kowalska
,
ChemEngineering
3
(
1
),
3
(
2019
).
57.
C.
Colbeau-Justin
,
M.
Kunst
, and
D.
Huguenin
,
J. Mater. Sci.
38
(
11
),
2429
(
2003
).
58.
K.
Wang
,
K.
Yoshiiri
,
L.
Rosa
,
Z.
Wei
,
S.
Juodkazis
,
B.
Ohtani
, and
E.
Kowalska
,
Catal. Today
397–399
,
257
(
2022
).
59.
B.
Ohtani
,
O. O. P.
Mahaney
,
F.
Amano
,
N.
Murakami
, and
R.
Abe
,
J. Adv. Oxid. Technol.
13
(
3
),
247
261
(
2010
).
60.
N.
Murakami
,
O. O. P.
Mahaney
,
T.
Torimoto
, and
B.
Ohtani
,
Chem. Phys. Lett.
426
(
1-3
),
204
208
(
2006
).
61.
M.
Buchalska
,
M.
Kobielusz
,
A.
Matuszek
,
M.
Pacia
,
S.
Wojtyła
, and
W.
Macyk
,
ACS Catal.
5
(
12
),
7424
7431
(
2015
).
62.
H.
Wei
,
S. K.
Loeb
,
N. J.
Halas
, and
J.-H.
Kim
,
Proc. Natl. Acad. Sci.
117
(
27
),
15473
15481
(
2020
).
63.
L.
Du
,
A.
Furube
,
K.
Yamamoto
,
K.
Hara
,
R.
Katoh
, and
M.
Tachiya
,
J. Phys. Chem. C
113
(
16
),
6454
6462
(
2009
).
64.
W.
Hou
and
S. B.
Cronin
,
Adv. Funct. Mater.
23
(
13
),
1612
1619
(
2013
).
65.
M. G.
Méndez-Medrano
,
E.
Kowalska
,
B.
Ohtani
,
D.
Bahena Uribe
,
C.
Colbeau-Justin
,
S.
Rau
,
J. L.
Rodríguez-López
, and
H.
Remita
,
J. Chem. Phys.
153
(
3
),
034705
(
2020
).
66.
A. L.
Luna
,
D.
Dragoe
,
K.
Wang
,
P.
Beaunier
,
E.
Kowalska
,
B.
Ohtani
,
D.
Bahena Uribe
,
M. A.
Valenzuela
,
H.
Remita
, and
C.
Colbeau-Justin
,
J. Phys. Chem. C
121
(
26
),
14302
14311
(
2017
).
67.
E.
Kowalska
,
K.
Yoshiiri
,
Z.
Wei
,
S.
Zheng
,
E.
Kastl
,
H.
Remita
,
B.
Ohtani
, and
S.
Rau
,
Appl. Catal., B
178
,
133
143
(
2015
).
68.
E.
Grabowska
,
A.
Zaleska
,
S.
Sorgues
,
M.
Kunst
,
A.
Etcheberry
,
C.
Colbeau-Justin
, and
H.
Remita
,
J. Phys. Chem. C
117
(
4
),
1955
1962
(
2013
).
You do not currently have access to this content.