Stable glasses (SGs) are formed through surface-mediated equilibration (SME) during physical vapor deposition (PVD). Unlike intermolecular interactions, the role of intramolecular degrees of freedom in this process remains unexplored. Here, using experiments and coarse-grained molecular dynamics simulations, we demonstrate that varying dihedral rotation barriers of even a single bond, in otherwise isomeric molecules, can strongly influence the structure and stability of PVD glasses. These effects arise from variations in the degree of surface mobility, mobility gradients, and mobility anisotropy, at a given deposition temperature (Tdep). At high Tdep, flexible molecules have access to more configurations, which enhances the rate of SME, forming isotropic SGs. At low Tdep, stability is achieved by out of equilibrium aging of the surface layer. Here, the poor packing of rigid molecules enhances the rate of surface-mediated aging, producing stable glasses with layered structures in a broad range of Tdep. In contrast, the dynamics of flexible molecules couple more efficiently to the glass layers underneath, resulting in reduced mobility and weaker mobility gradients, producing unstable glasses. Independent of stability, the flattened shape of flexible molecules can also promote in-plane orientational order at low Tdep. These results indicate that small changes in intramolecular relaxation barriers can be used as an approach to independently tune the structure and mobility profiles of the surface layer and, thus, the stability and structure of PVD glasses.

1.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
, “
Organic glasses with exceptional thermodynamic and kinetic stability
,”
Science
315
,
353
356
(
2007
).
2.
K. L.
Kearns
,
S. F.
Swallen
,
M. D.
Ediger
,
T.
Wu
,
Y.
Sun
, and
L.
Yu
, “
Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition
,”
J. Phys. Chem. B
112
,
4934
4942
(
2008
).
3.
T.
Liu
,
K.
Cheng
,
E.
Salami-Ranjbaran
,
F.
Gao
,
C.
Li
,
X.
Tong
,
Y.-C.
Lin
,
Y.
Zhang
,
W.
Zhang
,
L.
Klinge
,
P. J.
Walsh
, and
Z.
Fakhraai
, “
The effect of chemical structure on the stability of physical vapor deposited glasses of 1,3,5-triarylbenzene
,”
J. Chem. Phys.
143
,
084506
(
2015
).
4.
J.
Ràfols-Ribé
,
M.
Gonzalez-Silveira
,
C.
Rodríguez-Tinoco
, and
J.
Rodríguez-Viejo
, “
The role of thermodynamic stability in the characteristics of the devitrification front of vapour-deposited glasses of toluene
,”
Phys. Chem. Chem. Phys.
19
,
11089
11097
(
2017
).
5.
A.
Laventure
,
A.
Gujral
,
O.
Lebel
,
C.
Pellerin
, and
M. D.
Ediger
, “
Influence of hydrogen bonding on the kinetic stability of vapor-deposited glasses of triazine derivatives
,”
J. Phys. Chem. B
121
,
2350
2358
(
2017
).
6.
S. S.
Dalal
and
M. D.
Ediger
, “
Molecular orientation in stable glasses of indomethacin
,”
J. Phys. Chem. Lett.
3
,
1229
1233
(
2012
).
7.
D. M.
Walters
,
R.
Richert
, and
M. D.
Ediger
, “
Thermal stability of vapor-deposited stable glasses of an organic semiconductor
,”
J. Chem. Phys.
142
,
134504
(
2015
).
8.
J.
Ràfols-Ribé
,
A.
Vila-Costa
,
C.
Rodríguez-Tinoco
,
A. F.
Lopeandía
,
J.
Rodríguez-Viejo
, and
M.
Gonzalez-Silveira
, “
Kinetic arrest of front transformation to gain access to the bulk glass transition in ultrathin films of vapour-deposited glasses
,”
Phys. Chem. Chem. Phys.
20
,
29989
29995
(
2018
).
9.
D.
Yokoyama
, “
Molecular orientation in small-molecule organic light-emitting diodes
,”
J. Mater. Chem.
21
,
19187
(
2011
).
10.
S. S.
Dalal
,
D. M.
Walters
,
I.
Lyubimov
,
J. J.
de Pablo
, and
M. D.
Ediger
, “
Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
4227
4232
(
2015
).
11.
M.
Shibata
,
Y.
Sakai
, and
D.
Yokoyama
, “
Advantages and disadvantages of vacuum-deposited and spin-coated amorphous organic semiconductor films for organic light-emitting diodes
,”
J. Mater. Chem. C
3
,
11178
11191
(
2015
).
12.
D. M.
Walters
,
L.
Antony
,
J. J.
de Pablo
, and
M. D.
Ediger
, “
Influence of molecular shape on the thermal stability and molecular orientation of vapor-deposited organic semiconductors
,”
J. Phys. Chem. Lett.
8
,
3380
3386
(
2017
).
13.
M.
Oh-e
,
H.
Ogata
, and
F.
Araoka
, “
Randomization and constraint of molecular alignment and orientation: Temperature-dependent anisotropy and phase transition in vapor-deposited thin films of an organic cross-shaped molecule
,”
ACS Omega
4
,
39
47
(
2019
).
14.
A.
Mikaeili
,
T.
Matsushima
,
Y.
Esaki
,
S. A.
Yazdani
,
C.
Adachi
, and
E.
Mohajerani
, “
The origin of changes in electrical properties of organic films fabricated at various vacuum-deposition rates
,”
Opt. Mater.
91
,
93
100
(
2019
).
15.
F.
Hellman
, “
Surface-induced ordering: A model for vapor-deposition growth of amorphous materials
,”
Appl. Phys. Lett.
64
,
1947
1949
(
1994
).
16.
K. J.
Dawson
,
L.
Zhu
,
L.
Yu
, and
M. D.
Ediger
, “
Anisotropic structure and transformation kinetics of vapor-deposited indomethacin glasses
,”
J. Phys. Chem. B
115
,
455
463
(
2011
).
17.
D.
Yokoyama
,
Y.
Setoguchi
,
A.
Sakaguchi
,
M.
Suzuki
, and
C.
Adachi
, “
Orientation control of linear-shaped molecules in vacuum-deposited organic amorphous films and its effect on carrier mobilities
,”
Adv. Funct. Mater.
20
,
386
391
(
2010
).
18.
A.
Gujral
,
K. A.
O’Hara
,
M. F.
Toney
,
M. L.
Chabinyc
, and
M. D.
Ediger
, “
Structural characterization of vapor-deposited glasses of an organic hole transport material with x-ray scattering
,”
Chem. Mater.
27
,
3341
3348
(
2015
).
19.
A.
Gujral
,
L.
Yu
, and
M. D.
Ediger
, “
Anisotropic organic glasses
,”
Curr. Opin. Solid State Mater. Sci.
22
,
49
(
2018
).
20.
K.
Bagchi
,
A.
Gujral
,
M. F.
Toney
, and
M. D.
Ediger
, “
Generic packing motifs in vapor-deposited glasses of organic semiconductors
,”
Soft Matter
15
,
7590
7595
(
2019
).
21.
X.
Xing
,
L.
Zhong
,
L.
Zhang
,
Z.
Chen
,
B.
Qu
,
E.
Chen
,
L.
Xiao
, and
Q.
Gong
, “
Essential differences of organic films at the molecular level via vacuum deposition and solution processes for organic light-emitting diodes
,”
J. Phys. Chem. C
117
,
25405
25408
(
2013
).
22.
S.
Sohn
,
K. H.
Park
,
S.-K.
Kwon
,
H.-K.
Lee
,
H.
Ahn
,
S.
Jung
, and
Y.-H.
Kim
, “
Preferential orientation of tetrahedral silicon-based hosts in phosphorescent organic light-emitting diodes
,”
ACS Omega
3
,
9989
9996
(
2018
).
23.
T.
Liu
,
A. L.
Exarhos
,
E. C.
Alguire
,
F.
Gao
,
E.
Salami-Ranjbaran
,
K.
Cheng
,
T.
Jia
,
J. E.
Subotnik
,
P. J.
Walsh
,
J. M.
Kikkawa
, and
Z.
Fakhraai
, “
Birefringent stable glass with predominantly isotropic molecular orientation
,”
Phys. Rev. Lett.
119
,
095502
(
2017
).
24.
Y.
Noguchi
,
Y.
Miyazaki
,
Y.
Tanaka
,
N.
Sato
,
Y.
Nakayama
,
T. D.
Schmidt
,
W.
Brütting
, and
H.
Ishii
, “
Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices
,”
J. Appl. Phys.
111
,
114508
(
2012
).
25.
Z.
Fakhraai
,
T.
Still
,
G.
Fytas
, and
M. D.
Ediger
, “
Structural variations of an organic glassformer vapor-deposited onto a temperature gradient stage
,”
J. Phys. Chem. Lett.
2
,
423
427
(
2011
).
26.
S. E.
Wolf
,
S.
Fulco
,
A.
Zhang
,
H.
Zhao
,
P. J.
Walsh
,
K. T.
Turner
, and
Z.
Fakhraai
, “
Role of molecular layering in the enhanced mechanical properties of stable glasses
,”
J. Phys. Chem. Lett.
13
,
3360
3368
(
2022
).
27.
J. M.
Torres
,
N.
Bakken
,
J.
Li
, and
B. D.
Vogt
, “
Substrate temperature to control moduli and water uptake in thin films of vapor deposited N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPD)
,”
J. Phys. Chem. B
119
,
11928
11934
(
2015
).
28.
C.
Tangpatjaroen
,
K.
Bagchi
,
R. A.
Martínez
,
D.
Grierson
, and
I.
Szlufarska
, “
Mechanical properties of structure-tunable, vapor-deposited TPD glass
,”
J. Phys. Chem. C
122
,
27775
27781
(
2018
).
29.
Y.
Esaki
,
T.
Komino
,
T.
Matsushima
, and
C.
Adachi
, “
Enhanced electrical properties and air stability of amorphous organic thin films by engineering film density
,”
J. Phys. Chem. Lett.
8
,
5891
5897
(
2017
).
30.
K.
Bagchi
and
M. D.
Ediger
, “
Controlling structure and properties of vapor-deposited glasses of organic semiconductors: Recent advances and challenges
,”
J. Phys. Chem. Lett.
11
,
6935
6945
(
2020
).
31.
C.
Bishop
,
J. L.
Thelen
,
E.
Gann
,
M. F.
Toney
,
L.
Yu
,
D. M.
DeLongchamp
, and
M. D.
Ediger
, “
Vapor deposition of a nonmesogen prepares highly structured organic glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
21421
(
2019
).
32.
K.
Bagchi
,
N. E.
Jackson
,
A.
Gujral
,
C.
Huang
,
M. F.
Toney
,
L.
Yu
,
J. J.
de Pablo
, and
M. D.
Ediger
, “
Origin of anisotropic molecular packing in vapor-deposited alq3 glasses
,”
J. Phys. Chem. Lett.
10
,
164
170
(
2018
).
33.
S. S.
Dalal
,
A.
Sepúlveda
,
G. K.
Pribil
,
Z.
Fakhraai
, and
M. D.
Ediger
, “
Density and birefringence of a highly stable α, α, β-trisnaphthylbenzene glass
,”
J. Chem. Phys.
136
,
204501
(
2012
).
34.
T. J.
Ferron
,
J. L.
Thelen
,
K.
Bagchi
,
C.
Deng
,
E.
Gann
,
J. J.
de Pablo
,
M.
Ediger
,
D. F.
Sunday
, and
D. M.
DeLongchamp
, “
Characterization of the interfacial orientation and molecular conformation in a glass-forming organic semiconductor
,”
ACS Appl. Mater. Interfaces
14
,
3455
(
2022
).
35.
C.
Bishop
,
Y.
Li
,
M. F.
Toney
,
L.
Yu
, and
M. D.
Ediger
, “
Molecular orientation for vapor-deposited organic glasses follows rate-temperature superposition: The case of posaconazole
,”
J. Phys. Chem. B
124
,
2505
2513
(
2020
).
36.
I.
Lyubimov
,
L.
Antony
,
D. M.
Walters
,
D.
Rodney
,
M. D.
Ediger
, and
J. J.
de Pablo
, “
Orientational anisotropy in simulated vapor-deposited molecular glasses
,”
J. Chem. Phys.
143
,
094502
(
2015
).
37.
E.
Thoms
,
J. P.
Gabriel
,
A.
Guiseppi-Elie
,
M. D.
Ediger
, and
R.
Richert
, “
In situ observation of fast surface dynamics during the vapor-deposition of a stable organic glass
,”
Soft Matter
16
,
10860
(
2020
).
38.
J. L.
Thelen
,
C.
Bishop
,
K.
Bagchi
,
D. F.
Sunday
,
E.
Gann
,
S.
Mukherjee
,
L. J.
Richter
,
R. J.
Kline
,
M. D.
Ediger
, and
D. M.
DeLongchamp
, “
Molecular orientation depth profiles in organic glasses using polarized resonant soft x-ray reflectivity
,”
Chem. Mater.
32
,
6295
6309
(
2020
).
39.
A. R.
Moore
,
G.
Huang
,
S.
Wolf
,
P. J.
Walsh
,
Z.
Fakhraai
, and
R. A.
Riggleman
, “
Effects of microstructure formation on the stability of vapor-deposited glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
5937
5942
(
2019
).
40.
L.
Berthier
,
P.
Charbonneau
,
E.
Flenner
, and
F.
Zamponi
, “
Origin of ultrastability in vapor-deposited glasses
,”
Phys. Rev. Lett.
119
,
188002
(
2017
).
41.
L.
Yu
, “
Surface mobility of molecular glasses and its importance in physical stability
,”
Adv. Drug Delivery Rev.
100
,
3
9
(
2016
).
42.
Y.
Zhang
and
Z.
Fakhraai
, “
Decoupling of surface diffusion and relaxation dynamics of molecular glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
4915
4919
(
2017
).
43.
D. M.
Sussman
,
S. S.
Schoenholz
,
E. D.
Cubuk
, and
A. J.
Liu
, “
Disconnecting structure and dynamics in glassy thin films
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
10601
10605
(
2017
).
44.
Y.
Zhang
,
E. C.
Glor
,
M.
Li
,
T.
Liu
,
K.
Wahid
,
W.
Zhang
,
R. A.
Riggleman
, and
Z.
Fakhraai
, “
Long-range correlated dynamics in ultra-thin molecular glass films
,”
J. Chem. Phys.
145
,
114502
(
2016
).
45.
W.
Zhang
,
C. W.
Brian
, and
L.
Yu
, “
Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution
,”
J. Phys. Chem. B
119
,
5071
5078
(
2015
).
46.
C.
Rodríguez-Tinoco
,
M.
Gonzalez-Silveira
,
J.
Ràfols-Ribé
,
A.
Vila-Costa
,
J. C.
Martinez-Garcia
, and
J.
Rodríguez-Viejo
, “
Surface-bulk interplay in vapor-deposited glasses: Crossover length and the origin of front transformation
,”
Phys. Rev. Lett.
123
,
155501
(
2019
).
47.
Y.
Zhang
and
Z.
Fakhraai
, “
Invariant fast diffusion on the surfaces of ultrastable and aged molecular glasses
,”
Phys. Rev. Lett.
118
,
066101
(
2017
).
48.
A.
Sepúlveda
,
E.
Leon-Gutierrez
,
M.
Gonzalez-Silveira
,
C.
Rodríguez-Tinoco
,
M. T.
Clavaguera-Mora
, and
J.
Rodríguez-Viejo
, “
Accelerated aging in ultrathin films of a molecular glass former
,”
Phys. Rev. Lett.
107
,
025901
(
2011
).
49.
S.
Samanta
,
G.
Huang
,
G.
Gao
,
Y.
Zhang
,
A.
Zhang
,
S.
Wolf
,
C. N.
Woods
,
Y.
Jin
,
P. J.
Walsh
, and
Z.
Fakhraai
, “
Exploring the importance of surface diffusion in stability of vapor-deposited organic glasses
,”
J. Phys. Chem. B
123
,
4108
4117
(
2019
).
50.
C. W.
Brian
and
L.
Yu
, “
Surface self-diffusion of organic glasses
,”
J. Phys. Chem. A
117
,
13303
13309
(
2013
).
51.
Y. Z.
Chua
,
M.
Ahrenberg
,
M.
Tylinski
,
M. D.
Ediger
, and
C.
Schick
, “
How much time is needed to form a kinetically stable glass? AC calorimetric study of vapor-deposited glasses of ethylcyclohexane
,”
J. Chem. Phys.
142
,
054506
(
2015
).
52.
D.
Chatterjee
,
A.
Annamareddy
,
J.
Ketkaew
,
J.
Schroers
,
D.
Morgan
, and
P. M.
Voyles
, “
Fast surface dynamics on a metallic glass nanowire
,”
ACS Nano
15
,
11309
11316
(
2021
).
53.
K.
Paeng
,
S. F.
Swallen
, and
M. D.
Ediger
, “
Direct measurement of molecular motion in freestanding polystyrene thin films
,”
J. Am. Chem. Soc.
133
,
8444
8447
(
2011
).
54.
J. H.
Teichroeb
and
J. A.
Forrest
, “
Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces
,”
Phys. Rev. Lett.
91
,
016104
(
2003
).
55.
D.
Qi
,
M.
Ilton
, and
J. A.
Forrest
, “
Measuring surface and bulk relaxation in glassy polymers
,”
Eur. Phys. J. E
34
,
56
(
2011
).
56.
K.
Bagchi
,
C.
Deng
,
C.
Bishop
,
Y.
Li
,
N. E.
Jackson
,
L.
Yu
,
M. F.
Toney
,
J. J.
De Pablo
, and
M. D.
Ediger
, “
Over what length scale does an inorganic substrate perturb the structure of a glassy organic semiconductor?
,”
ACS Appl. Mater. Interfaces
12
,
26717
26726
(
2020
).
57.
T.
Liu
,
K.
Cheng
,
E.
Salami-Ranjbaran
,
F.
Gao
,
E. C.
Glor
,
M.
Li
,
P. J.
Walsh
, and
Z.
Fakhraai
, “
Synthesis and high-throughput characterization of structural analogues of molecular glassformers: 1,3,5-trisarylbenzenes
,”
Soft Matter
11
,
7558
7566
(
2015
).
58.
S. E.
Wolf
,
T.
Liu
,
S.
Govind
,
H.
Zhao
,
G.
Huang
,
A.
Zhang
,
Y.
Wu
,
J.
Chin
,
K.
Cheng
,
E.
Salami-Ranjbaran
 et al., “
Design of a homologous series of molecular glassformers
,”
J. Chem. Phys.
155
,
224503
(
2021
).
59.
Y.
Jin
,
A.
Zhang
,
S. E.
Wolf
,
S.
Govind
,
A. R.
Moore
,
M.
Zhernenkov
,
G.
Freychet
,
A. A.
Shamsabadi
, and
Z.
Fakhraai
, “
Glasses denser than the supercooled liquid
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2100738118
(
2021
).
60.
A.
Zhang
, “
Manipulating glass structure and properties through surface mediated equilibrium
,” Ph.D. thesis,
University of Pennsylvania
,
2021
.
61.
K.
Nikitin
,
H.
Müller-Bunz
,
Y.
Ortin
,
J.
Muldoon
, and
M. J.
McGlinchey
, “
Restricted rotation in 9-phenyl-anthracenes: A prediction fulfilled
,”
Org. Lett.
13
,
256
259
(
2011
).
62.
D.
Nori-shargh
,
S.
Asadzadeh
,
F.-R.
Ghanizadeh
,
F.
Deyhimi
,
M. M.
Amini
, and
S.
Jameh-Bozorghi
, “
Ab initio study of the structures and dynamic stereochemistry of biaryls
,”
J. Mol. Struct.: THEOCHEM
717
,
41
51
(
2005
).
63.
S.
Singh
and
J. J.
de Pablo
, “
A molecular view of vapor deposited glasses
,”
J. Chem. Phys.
134
,
194903
(
2011
).
64.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
65.
F.
Varnik
,
J.
Baschnagel
, and
K.
Binder
, “
Reduction of the glass transition temperature in polymer films: A molecular-dynamics study
,”
Phys. Rev. E
65
,
021507
(
2002
).
66.
G.
Sun
,
S.
Saw
,
I.
Douglass
, and
P.
Harrowell
, “
Structural origin of enhanced dynamics at the surface of a glassy alloy
,”
Phys. Rev. Lett.
119
,
245501
(
2017
).
67.
Y.
Zhang
,
C. N.
Woods
,
M.
Alvarez
,
Y.
Jin
,
R. A.
Riggleman
, and
Z.
Fakhraai
, “
Effect of substrate interactions on the glass transition and length-scale of correlated dynamics in ultra-thin molecular glass films
,”
J. Chem. Phys.
149
,
184902
(
2018
).
68.
S. S.
Dalal
,
Z.
Fakhraai
, and
M. D.
Ediger
, “
High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses
,”
J. Phys. Chem. B
117
,
15415
15425
(
2013
).
69.
J. H.
Mangalara
,
M. D.
Marvin
, and
D. S.
Simmons
, “
Three-layer model for the emergence of ultrastable glasses from the surfaces of supercooled liquids
,”
J. Phys. Chem. B
120
,
4861
4865
(
2016
).

Supplementary Material

You do not currently have access to this content.