Fluids confined in small volumes behave differently than fluids in bulk systems. For bulk systems, a compact summary of the system’s thermodynamic properties is provided by equations of state. However, there is currently a lack of successful methods to predict the thermodynamic properties of confined fluids by use of equations of state, since their thermodynamic state depends on additional parameters introduced by the enclosing surface. In this work, we present a consistent thermodynamic framework that represents an equation of state for pure, confined fluids. The total system is decomposed into a bulk phase in equilibrium with a surface phase. The equation of state is based on an existing, accurate description of the bulk fluid and uses Gibbs’ framework for surface excess properties to consistently incorporate contributions from the surface. We apply the equation of state to a Lennard-Jones spline fluid confined by a spherical surface with a Weeks–Chandler–Andersen wall-potential. The pressure and internal energy predicted from the equation of state are in good agreement with the properties obtained directly from molecular dynamics simulations. We find that when the location of the dividing surface is chosen appropriately, the properties of highly curved surfaces can be predicted from those of a planar surface. The choice of the dividing surface affects the magnitude of the surface excess properties and its curvature dependence, but the properties of the total system remain unchanged. The framework can predict the properties of confined systems with a wide range of geometries, sizes, interparticle interactions, and wall–particle interactions, and it is independent of ensemble. A targeted area of use is the prediction of thermodynamic properties in porous media, for which a possible application of the framework is elaborated.

1.
A. V.
Neimark
and
K. G.
Kornev
, “
Classification of equilibrium configurations of wetting films on planar substrates
,”
Langmuir
16
,
5526
5529
(
2000
).
2.
A. V.
Neimark
,
P. I.
Ravikovitch
, and
A.
Vishnyakov
, “
Inside the hysteresis loop: Multiplicity of internal states in confined fluids
,”
Phys. Rev. E
65
,
031505
(
2002
).
3.
T.
Horikawa
,
D. D.
Do
, and
D.
Nicholson
, “
Capillary condensation of adsorbates in porous materials
,”
Adv. Colloid Interface Sci.
169
,
40
58
(
2011
).
4.
T.
Hiratsuka
,
H.
Tanaka
, and
M. T.
Miyahara
, “
Comprehensive modeling of capillary condensation in open-ended nanopores: Equilibrium, metastability, and spinodal
,”
J. Phys. Chem. C
121
,
26877
26886
(
2017
).
5.
L.
Liu
,
S.-H.
Chen
,
A.
Faraone
,
C.-W.
Yen
, and
C.-Y.
Mou
, “
Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water
,”
Phys. Rev. Lett.
95
,
117802
(
2005
).
6.
J. K.
Brennan
,
T. J.
Bandosz
,
K. T.
Thomson
, and
K. E.
Gubbins
, “
Water in porous carbons
,”
Colloids Surf.
187-188
,
539
568
(
2001
).
7.
X.-Q.
Chu
,
K.-H.
Liu
,
M. S.
Tyagi
,
C.-Y.
Mou
, and
S.-H.
Chen
, “
Low-temperature dynamics of water confined in a hydrophobic mesoporous material
,”
Phys. Rev. E
82
,
020501
(
2010
).
8.
Y.-X.
Yu
,
F.-Q.
You
,
Y.
Tang
,
G.-H.
Gao
, and
Y.-G.
Li
, “
Structure and adsorption of a hard-core multi-Yukawa fluid confined in a slitlike pore: Grand canonical Monte Carlo simulation and density functional study
,”
J. Phys. Chem. B
110
,
334
341
(
2006
).
9.
B.
Peng
and
Y.-X.
Yu
, “
A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials
,”
Langmuir
24
,
12431
12439
(
2008
).
10.
Y.-X.
Yu
, “
A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces
,”
J. Chem. Phys.
131
,
024704
(
2009
).
11.
L.-Y.
Wang
,
F.
Gu
,
H.-J.
Wang
, and
Z.-L.
Sun
, “
Pressure profile for an associating Lennard-Jones fluid confined in a spherical cavity
,”
J. Phys. Chem. B
121
,
2142
2152
(
2017
).
12.
B. R.
Didar
and
I. Y.
Akkutlu
, “
Pore-size dependence of fluid phase behavior and properties in organic-rich shale reservoirs
,” in
SPE International Symposium on Oilfield Chemistry
(
2013
); available at https://onepetro.org/SPEOCC/proceedings-pdf/13OCS/All-13OCS/SPE-164099-MS/1583712/spe-164099-ms.pdf.
13.
H.
Cárdenas
and
E. A.
Müller
, “
How does the shape and surface energy of pores affect the adsorption of nanoconfined fluids?
,”
AIChE J.
67
,
e17011
(
2021
).
14.
V.
Bråten
,
D.
Bedeaux
,
Ø.
Wilhelmsen
, and
S. K.
Schnell
, “
Small size effects in open and closed systems: What can we learn from ideal gases about systems with interacting particles?
,”
J. Chem. Phys.
155
,
244504
(
2021
).
15.
I.
Urrutia
, “
Three hard spheres in a spherical cavity
,”
J. Chem. Phys.
135
,
024511
(
2011
).
16.
A.
Aasen
,
M.
Hammer
,
G.
Skaugen
,
J. P.
Jakobsen
, and
Ø.
Wilhelmsen
, “
Thermodynamic models to accurately describe the PVTxy-behavior of water/carbon dioxide mixtures
,”
Fluid Phase Equilib.
442
,
125
139
(
2017
).
17.
V.
Koulocheris
,
V.
Louli
,
E.
Panteli
,
S.
Skouras
, and
E.
Voutsas
, “
Modelling of elemental mercury solubility in natural gas components
,”
Fuel
233
,
558
564
(
2018
).
18.
G. J.
Zarragoicoechea
and
V. A.
Kuz
, “
van der Waals equation of state for a fluid in a nanopore
,”
Phys. Rev. E
65
,
021110
(
2002
).
19.
G. J.
Zarragoicoechea
and
V. A.
Kuz
, “
Critical shift of a confined fluid in a nanopore
,”
Fluid Phase Equilib.
220
,
7
9
(
2004
).
20.
L.
Travalloni
,
M.
Castier
,
F. W.
Tavares
, and
S. I.
Sandler
, “
Thermodynamic modeling of confined fluids using an extension of the generalized van der Waals theory
,”
Chem. Eng. Sci.
65
,
3088
3099
(
2010
).
21.
L.
Travalloni
,
M.
Castier
,
F. W.
Tavares
, and
S. I.
Sandler
, “
Critical behavior of pure confined fluids from an extension of the van der Waals equation of state
,”
J. Supercrit. Fluids
55
,
455
461
(
2010
).
22.
Ø.
Wilhelmsen
,
A.
Aasen
,
G.
Skaugen
,
P.
Aursand
,
A.
Austegard
,
E.
Aursand
,
M. A.
Gjennestad
,
H.
Lund
,
G.
Linga
, and
M.
Hammer
, “
Thermodynamic modeling with equations of state: Present challenges with established methods
,”
Ind. Eng. Chem. Res.
56
,
3503
3515
(
2017
).
23.
M.
Holovko
,
T.
Patsahan
, and
W.
Dong
, “
Fluids in random porous media: Scaled particle theory
,”
Pure Appl. Chem.
85
,
115
133
(
2012
).
24.
M. F.
Holovko
,
T. M.
Patsahan
, and
V. I.
Shmotolokha
, “
What is liquid in random porous media: The Barker-Henderson perturbation theory
,”
Condens. Matter Phys.
18
,
13607
(
2015
).
25.
T. V.
Hvozd
,
Y. V.
Kalyuzhnyi
, and
P. T.
Cummings
, “
Phase equilibria of polydisperse square-well chain fluid confined in random porous media: TPT of Wertheim and scaled particle theory
,”
J. Phys. Chem. B
122
,
5458
5465
(
2018
).
26.
A. K.
Nelson
,
Y. V.
Kalyuzhnyi
,
T.
Patsahan
, and
C.
McCabe
, “
Liquid-vapor phase equilibrium of a simple liquid confined in a random porous media: Second-order Barker-Henderson perturbation theory and scaled particle theory
,”
J. Mol. Liq.
300
,
112348
(
2020
).
27.
D.
Bedeaux
,
S.
Kjelstrup
, and
S. K.
Schnell
,
Nanothermodynamics. General Theory
(
PoreLab Publisher
,
2020
).
28.
T. L.
Hill
,
Thermodynamics of Small Systems
(
Dover Publications
,
New York
,
1994
).
29.
E.
Bering
,
S.
Kjelstrup
,
D.
Bedeaux
,
J. M.
Rubi
, and
A. S.
de Wijn
, “
Entropy production beyond the thermodynamic limit from single-molecule stretching simulations
,”
J. Phys. Chem. B
124
,
8909
8917
(
2020
).
30.
E.
Bering
,
D.
Bedeaux
,
S.
Kjelstrup
,
A. S.
de Wijn
,
I.
Latella
, and
J. M.
Rubi
, “
A Legendre–Fenchel transform for molecular stretching energies
,”
Nanomaterials
10
,
2355
(
2020
).
31.
O.
Galteland
,
D.
Bedeaux
,
B.
Hafskjold
, and
S.
Kjelstrup
, “
Pressures inside a nano-porous medium. The case of a single phase fluid
,”
Front. Phys.
7
,
60
(
2019
).
32.
M. T.
Rauter
,
O.
Galteland
,
M.
Erdős
,
O. A.
Moultos
,
T. J. H.
Vlugt
,
S. K.
Schnell
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Two-phase equilibrium conditions in nanopores
,”
Nanomaterials
10
,
608
(
2020
).
33.
O.
Galteland
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Nanothermodynamic description and molecular simulation of a single-phase fluid in a slit pore
,”
Nanomaterials
11
,
165
(
2021
).
34.
S. K.
Schnell
,
T. J. H.
Vlugt
,
J.-M.
Simon
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects
,”
Mol. Phys.
110
,
1069
1079
(
2012
).
35.
B. A.
Strøm
,
J.-M.
Simon
,
S. K.
Schnell
,
S.
Kjelstrup
,
J.
He
, and
D.
Bedeaux
, “
Size and shape effects on the thermodynamic properties of nanoscale volumes of water
,”
Phys. Chem. Chem. Phys.
19
,
9016
9027
(
2017
).
36.
V.
Bråten
,
Ø.
Wilhelmsen
, and
S. K.
Schnell
, “
Chemical potential differences in the macroscopic limit from fluctuations in small systems
,”
J. Chem. Inf. Model.
61
,
840
855
(
2021
).
37.
J. W.
Gibbs
,
The Scientific Papers of J. Willard Gibbs
(
Ox Bow Press
,
London
,
1993
).
38.
R. C.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
39.
W.
Helfrich
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch., C
28
,
693
703
(
1973
).
40.
A.
Aasen
,
E. M.
Blokhuis
, and
Ø.
Wilhelmsen
, “
Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples
,”
J. Chem. Phys.
148
,
204702
(
2018
).
41.
A.
Aasen
,
D.
Reguera
, and
Ø.
Wilhelmsen
, “
Curvature corrections remove the inconsistencies of binary classical nucleation theory
,”
Phys. Rev. Lett.
124
,
045701
(
2020
).
42.
I. E.
Paganini
,
R. L.
Davidchack
,
B. B.
Laird
, and
I.
Urrutia
, “
Properties of the hard-sphere fluid at a planar wall using virial series and molecular-dynamics simulation
,”
J. Chem. Phys.
149
,
014704
(
2018
).
43.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
,
338
343
(
1949
).
44.
T.
Ikeshoji
,
B.
Hafskjold
, and
H.
Furuholt
, “
Molecular-level calculation scheme for pressure in inhomogeneous systems of flat and spherical layers
,”
Mol. Simul.
29
,
101
109
(
2003
).
45.
Y.
Long
,
M.
Śliwińska-Bartkowiak
,
H.
Drozdowski
,
M.
Kempiński
,
K. A.
Phillips
,
J. C.
Palmer
, and
K. E.
Gubbins
, “
High pressure effect in nanoporous carbon materials: Effects of pore geometry
,”
Colloids Surf., A
437
,
33
41
(
2013
).
46.
Z.
Sun
,
Y.
Kang
, and
J.
Zhang
, “
Density functional study of pressure profile for hard-sphere fluids confined in a nano-cavity
,”
AIP Adv.
4
,
031308
(
2014
).
47.
K.
Shi
,
E. E.
Santiso
, and
K. E.
Gubbins
, “
Can we define a unique microscopic pressure in inhomogeneous fluids?
,”
J. Chem. Phys.
154
,
084502
(
2021
).
48.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
(
Academic Press
,
2013
).
49.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
50.
B. L.
Holian
and
D. J.
Evans
, “
Shear viscosities away from the melting line: A comparison of equilibrium and nonequilibrium molecular dynamics
,”
J. Chem. Phys.
78
,
5147
5150
(
1983
).
51.
B.
Hafskjold
,
K. P.
Travis
,
A. B.
Hass
,
M.
Hammer
,
A.
Aasen
, and
Ø.
Wilhelmsen
, “
Thermodynamic properties of the 3D Lennard-Jones/spline model
,”
Mol. Phys.
117
,
3754
3769
(
2019
).
52.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
53.
T.
van Westen
and
J.
Gross
, “
Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: UV-theory
,”
J. Chem. Phys.
155
,
244501
(
2021
).
54.
T.
van Westen
,
M.
Hammer
,
B.
Hafskjold
,
A.
Aasen
,
J.
Gross
, and
Ø.
Wilhelmsen
, “
Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid
,”
J. Chem. Phys.
156
,
104504
(
2022
).
55.
See https://github.com/SINTEF/thermopack, Thermopack (
2022
).
56.
F.
Heidari
,
T.
Keshavarzi
, and
G. A.
Mansoori
, “
Attractive energy contribution to nanoconfined fluids behavior: The normal pressure tensor
,”
Microfluid. Nanofluid.
10
,
899
906
(
2011
).
57.
A.
Helmi
and
E.
Keshavarzi
, “
The role of concavo-convex walls of a nanopore on the density profile, adsorption, solvation force, and capillary condensation of confined fluids: A DFT study
,”
Chem. Phys.
433
,
67
75
(
2014
).
58.
I.
Urrutia
, “
Bending rigidity and higher-order curvature terms for the hard-sphere fluid near a curved wall
,”
Phys. Rev. E
89
,
032122
(
2014
).
59.
A.
Reindl
,
M.
Bier
, and
S.
Dietrich
, “
Implications of interface conventions for morphometric thermodynamics
,”
Phys. Rev. E
91
,
022406
(
2015
).
60.
M. A.
Gjennestad
and
Ø.
Wilhelmsen
, “
Thermodynamic stability of volatile droplets and thin films governed by the disjoining pressure in open and closed containers
,”
Langmuir
36
,
7879
(
2020
).
61.
S.
Whitaker
, “
Flow in porous media I: A theoretical derivation of Darcy’s law
,”
Transp. Porous Media
1
,
3
25
(
1986
).
62.
O.
Galteland
,
M. T.
Rauter
,
M. S.
Bratvold
,
T. T.
Trinh
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Local thermodynamic description of isothermal single-phase flow in porous media
,” arXiv:2203.02334 (
2022
).

Supplementary Material

You do not currently have access to this content.