We numerically study the equilibrium relaxation dynamics of a two-dimensional Mari–Kurchan glass model. The tree-like structure of particle interactions forbids both nontrivial structural motifs and the emergence of a complex free-energy landscape leading to a thermodynamic glass transition, while the finite-dimensional nature of the model prevents the existence of a mode-coupling singularity. Nevertheless, the equilibrium relaxation dynamics is shown to be in excellent agreement with simulations performed in conventional glass-formers. Averaged time correlation functions display a phenomenology typical of supercooled liquids, including the emergence of an excess signal in relaxation spectra at intermediate frequencies. We show that this evolution is accompanied by strong signatures of collective and heterogeneous dynamics that cannot be interpreted in terms of single particle hopping and emerge from dynamic facilitation. Our study demonstrates that an off-lattice interacting particle model with extremely simple structural correlations displays quantitatively realistic glassy dynamics.

1.
P. G.
Debenedetti
and
F. H.
Stillinger
, “
Supercooled liquids and the glass transition
,”
Nature
410
,
259
267
(
2001
).
2.
L.
Berthier
and
M. D.
Ediger
, “
Facets of glass physics
,”
Phys. Today
69
,
40
46
(
2016
).
3.
M. D.
Ediger
, “
Spatially heterogeneous dynamics in supercooled liquids
,”
Annu. Rev. Phys. Chem.
51
,
99
128
(
2000
).
4.
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
,
L.
Cipelletti
, and
W.
van Saarloos
,
Dynamical Heterogeneities in Glasses, Colloids, and Granular Media
(
OUP Oxford
,
2011
), Vol. 150.
5.
L.
Berthier
, “
Dynamic heterogeneity in amorphous materials
,”
Physics
4
,
42
(
2011
).
6.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
645
(
2011
).
7.
G.
Adam
and
J. H.
Gibbs
, “
On the temperature dependence of cooperative relaxation properties in glass-forming liquids
,”
J. Chem. Phys.
43
,
139
(
1965
).
8.
T. R.
Kirkpatrick
and
D.
Thirumalai
, “
p-spin-interaction spin-glass models: Connections with the structural glass problem
,”
Phys. Rev. B
36
,
5388
5397
(
1987
).
9.
T. R.
Kirkpatrick
,
D.
Thirumalai
, and
P. G.
Wolynes
, “
Scaling concepts for the dynamics of viscous liquids near an ideal glassy state
,”
Phys. Rev. A
40
,
1045
1054
(
1989
).
10.
J.
Kurchan
,
G.
Parisi
, and
F.
Zamponi
, “
Exact theory of dense amorphous hard spheres in high dimension. I. The free energy
,”
J. Stat. Mech.: Theory Exp.
2012
,
P10012
.
11.
P.
Charbonneau
,
J.
Kurchan
,
G.
Parisi
,
P.
Urbani
, and
F.
Zamponi
, “
Exact theory of dense amorphous hard spheres in high dimension. III. The full replica symmetry breaking solution
,”
J. Stat. Mech.: Theory Exp.
2014
,
P10009
.
12.
G.
Parisi
,
P.
Urbani
, and
F.
Zamponi
,
Theory of Simple Glasses: Exact Solutions in Infinite Dimensions
(
Cambridge University Press
,
2020
).
13.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press on Demand
,
2009
), Vol. 143.
14.
T.
Maimbourg
,
J.
Kurchan
, and
F.
Zamponi
, “
Solution of the dynamics of liquids in the large-dimensional limit
,”
Phys. Rev. Lett.
116
,
015902
(
2016
).
15.
J.-P.
Bouchaud
and
G.
Biroli
, “
On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses
,”
J. Chem. Phys.
121
,
7347
7354
(
2004
).
16.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
75
(
2015
).
17.
D.
Kivelson
,
S. A.
Kivelson
,
X.
Zhao
,
Z.
Nussinov
, and
G.
Tarjus
, “
A thermodynamic theory of supercooled liquids
,”
Physica A
219
,
27
38
(
1995
).
18.
G.
Tarjus
,
S. A.
Kivelson
,
Z.
Nussinov
, and
P.
Viot
, “
The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment
,”
J. Phys.: Condens. Matter
17
,
R1143
R1182
(
2005
).
19.
J. P.
Garrahan
and
D.
Chandler
, “
Geometrical explanation and scaling of dynamical heterogeneities in glass forming systems
,”
Phys. Rev. Lett.
89
,
035704
(
2002
).
20.
Y. S.
Elmatad
Elmatad
,
D.
Chandler
, and
J. P.
Garrahan
, “
Corresponding states of structural glass formers
,”
J. Phys. Chem. B
113
,
5563
5567
(
2009
).
21.
D.
Chandler
and
J. P.
Garrahan
, “
Dynamics on the way to forming glass: Bubbles in space-time
,”
Annu. Rev. Phys. Chem.
61
,
191
217
(
2010
).
22.
B.
Scott
and
P.
Harrowell
, “
The origin of glassy dynamics in the 2D facilitated kinetic Ising model
,”
J. Chem. Phys.
95
,
4454
4465
(
1991
).
23.
S.
Whitelam
,
L.
Berthier
, and
J. P.
Garrahan
, “
Dynamic criticality in glass-forming liquids
,”
Phys. Rev. Lett.
92
,
185705
(
2004
).
24.
G. H.
Fredrickson
and
H. C.
Andersen
, “
Kinetic Ising model of the glass transition
,”
Phys. Rev. Lett.
53
,
1244
1247
(
1984
).
25.
J.
Jäckle
and
S.
Eisinger
, “
A hierarchically constrained kinetic Ising model
,”
Z. Phys. B Condens. Matter
84
,
115
124
(
1991
).
26.
F.
Ritort
and
P.
Sollich
, “
Glassy dynamics of kinetically constrained models
,”
Adv. Phys.
52
,
219
342
(
2003
).
27.
G.
Tarjus
, “
An overview of the theories of the glass transition
,” in (
Oxford University Press
,
2011
), pp.
39
67
.
28.
F.
Arceri
,
F. P.
Landes
,
L.
Berthier
, and
G.
Biroli
, “
A statistical mechanics perspective on glasses and aging
,” in
Encyclopedia of Complexity and Systems Science
(
Springer
,
Berlin, Heidelberg
,
2021
), pp.
1
68
.
29.
T. S.
Grigera
and
G.
Parisi
, “
Fast Monte Carlo algorithm for supercooled soft spheres
,”
Phys. Rev. E
63
,
045102
(
2001
).
30.
L.
Berthier
,
D.
Coslovich
,
A.
Ninarello
, and
M.
Ozawa
, “
Equilibrium sampling of hard spheres up to the Jamming density and beyond
,”
Phys. Rev. Lett.
116
,
238002
(
2016
).
31.
A.
Ninarello
,
L.
Berthier
, and
D.
Coslovich
, “
Models and algorithms for the next generation of glass transition studies
,”
Phys. Rev. X
7
,
021039
(
2017
).
32.
L.
Berthier
,
E.
Flenner
,
C. J.
Fullerton
,
C.
Scalliet
, and
M.
Singh
, “
Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids
,”
J. Stat. Mech.: Theory Exp.
2019
,
064004
.
33.
L.
Berthier
,
P.
Charbonneau
,
D.
Coslovich
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
, “
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11356
11361
(
2017
).
34.
M.
Ozawa
,
L.
Berthier
,
G.
Biroli
,
A.
Rosso
, and
G.
Tarjus
, “
Random critical point separates brittle and ductile yielding transitions in amorphous materials
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
6656
6661
(
2018
).
35.
L.
Berthier
,
P.
Charbonneau
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
, “
Zero-temperature glass transition in two dimensions
,”
Nat. Commun.
10
,
1508
(
2019
).
36.
B.
Guiselin
,
L.
Berthier
, and
G.
Tarjus
, “
Random-field Ising model criticality in a glass-forming liquid
,”
Phys. Rev. E
102
,
042129
(
2020
).
37.
L.
Wang
,
A.
Ninarello
,
P.
Guan
,
L.
Berthier
,
G.
Szamel
, and
E.
Flenner
, “
Low-frequency vibrational modes of stable glasses
,”
Nat. Commun.
10
,
26
(
2019
).
38.
D.
Khomenko
,
C.
Scalliet
,
L.
Berthier
,
D. R.
Reichman
, and
F.
Zamponi
, “
Depletion of two-level systems in ultrastable computer-generated glasses
,”
Phys. Rev. Lett.
124
,
225901
(
2020
).
39.
M.
Wyart
and
M. E.
Cates
, “
Does a growing static length scale control the glass transition?
,”
Phys. Rev. Lett.
119
,
195501
(
2017
).
40.
H.
Ikeda
,
F.
Zamponi
, and
A.
Ikeda
, “
Mean field theory of the swap Monte Carlo algorithm
,”
J. Chem. Phys.
147
,
234506
(
2017
).
41.
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
, and
G.
Tarjus
, “
Can the glass transition be explained without a growing static length scale?
,”
J. Chem. Phys.
150
,
094501
(
2019
).
42.
L.
Berthier
, “
Self-induced heterogeneity in deeply supercooled liquids
,”
Phys. Rev. Lett.
127
,
088002
(
2021
).
43.
B.
Guiselin
,
C.
Scalliet
, and
L.
Berthier
, “
Microscopic origin of excess wings in relaxation spectra of deeply supercooled liquids
,”
Nat. Phys.
18
(
4
),
468
472
(
2022
).
44.
F.
Sausset
,
G.
Tarjus
, and
P.
Viot
, “
Tuning the fragility of a glass-forming liquid by curving space
,”
Phys. Rev. Lett.
101
,
155701
(
2008
).
45.
F.
Turci
,
G.
Tarjus
, and
C. P.
Royall
, “
From glass formation to icosahedral ordering by curving three-dimensional space
,”
Phys. Rev. Lett.
118
,
215501
(
2017
).
46.
J. D.
Eaves
and
D. R.
Reichman
, “
Spatial dimension and the dynamics of supercooled liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15171
15175
(
2009
).
47.
L.
Berthier
,
P.
Charbonneau
, and
J.
Kundu
, “
Finite dimensional vestige of spinodal criticality above the dynamical glass transition
,”
Phys. Rev. Lett.
125
,
108001
(
2020
).
48.
M.
Adhikari
,
S.
Karmakar
, and
S.
Sastry
, “
Spatial dimensionality dependence of heterogeneity, breakdown of the Stokes–Einstein relation, and fragility of a model glass-forming liquid
,”
J. Phys. Chem. B
125
,
10232
10239
(
2021
).
49.
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrocchio
, “
Thermodynamic signature of growing amorphous order in glass-forming liquids
,”
Nat. Phys.
4
,
771
775
(
2008
).
50.
L.
Berthier
,
G.
Biroli
,
D.
Coslovich
,
W.
Kob
, and
C.
Toninelli
, “
Finite-size effects in the dynamics of glass-forming liquids
,”
Phys. Rev. E
86
,
031502
(
2012
).
51.
K.
Walter
,
S.
Roldán-Vargas
, and
L.
Berthier
, “
Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids
,”
Nat. Phys.
8
,
164
167
(
2012
).
52.
W.
Kob
and
L.
Berthier
, “
Probing a liquid to glass transition in equilibrium
,”
Phys. Rev. Lett.
110
,
245702
(
2013
).
53.
L.
Berthier
and
G.
Tarjus
, “
Nonperturbative effect of attractive forces in viscous liquids
,”
Phys. Rev. Lett.
103
,
170601
(
2009
).
54.
L.
Berthier
and
T. A.
Witten
, “
Glass transition of dense fluids of hard and compressible spheres
,”
Phys. Rev. E
80
,
021502
(
2009
).
55.
A.
Ikeda
and
K.
Miyazaki
, “
Glass transition of the monodisperse Gaussian core model
,”
Phys. Rev. Lett.
106
,
015701
(
2011
).
56.
R.
Mari
,
F.
Krzakala
, and
J.
Kurchan
, “
Jamming versus glass transitions
,”
Phys. Rev. Lett.
103
,
025701
(
2009
).
57.
R.
Mari
and
J.
Kurchan
, “
Dynamical transition of glasses: From exact to approximate
,”
J. Chem. Phys.
135
,
124504
(
2011
).
58.
R. H.
Kraichnan
, “
Stochastic models for many-body systems. I. Infinite systems in thermal equilibrium
,”
J. Math. Phys.
3
,
475
495
(
1962
).
59.
P.
Charbonneau
,
Y.
Jin
,
G.
Parisi
, and
F.
Zamponi
, “
Hopping and the Stokes–Einstein relation breakdown in simple glass formers
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
15025
15030
(
2014
).
60.
Y.
Jin
and
P.
Charbonneau
, “
Dimensional study of the dynamical arrest in a random Lorentz gas
,”
Phys. Rev. E
91
,
042313
(
2015
).
61.
G.
Biroli
,
P.
Charbonneau
,
Y.
Hu
,
H.
Ikeda
,
G.
Szamel
, and
F.
Zamponi
, “
Mean-field caging in a random Lorentz gas
,”
J. Phys. Chem. B
125
,
6244
6254
(
2021
).
62.
Y.
Nishikawa
,
M.
Ozawa
,
A.
Ikeda
,
P.
Chaudhuri
, and
L.
Berthier
, “
Relaxation dynamics in the energy landscape of glass-forming liquids
,”
Phys. Rev. X
12
,
021001
(
2022
).
63.
D.
Achlioptas
,
H.
Jia
, and
C.
Moore
, “
Hiding satisfying assignments: Two are better than one
,”
J. Artif. Intell. Res.
24
,
623
639
(
2005
).
64.
D.
Achlioptas
and
A.
Coja-Oghlan
, “
Algorithmic barriers from phase transitions
,” in
2008 49th Annual IEEE Symposium on Foundations of Computer Science
(
IEEE
,
2008
), pp.
793
802
.
65.
F.
Krzakala
and
L.
Zdeborová
, “
Hiding quiet solutions in random constraint satisfaction problems
,”
Phys. Rev. Lett.
102
,
238701
(
2009
).
66.
L.
Berthier
and
M. D.
Ediger
, “
How to ‘measure’ a structural relaxation time that is too long to be measured?
,”
J. Chem. Phys.
153
,
044501
(
2020
).
67.
A.
Cavagna
, “
Supercooled liquids for pedestrians
,”
Phys. Rep.
476
,
51
124
(
2009
).
68.
T.
Hecksher
,
A. I.
Nielsen
,
N. B.
Olsen
, and
J. C.
Dyre
, “
Little evidence for dynamic divergences in ultraviscous molecular liquids
,”
Nat. Phys.
4
,
737
741
(
2008
).
69.
G.
Williams
, “
Use of the dipole correlation function in dielectric relaxation
,”
Chem. Rev.
72
,
55
69
(
1972
).
70.
J. P. M.
Jämbeck
,
M.
Unge
, and
S.
Laihonen
, “
Determining the dielectric losses in polymers by using molecular dynamics simulations
,” in
2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
IEEE
,
2015
), Vol. 2015, pp.
146
149
.
71.
L.
Berthier
and
J. P.
Garrahan
, “
Numerical study of a fragile three-dimensional kinetically constrained model
,”
J. Phys. Chem. B
109
,
3578
3585
(
2005
).
72.
L. C.
Pardo
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Dielectric spectroscopy in benzophenone: The β relaxation and its relation to the mode-coupling Cole-Cole peak
,”
Phys. Rev. E
76
,
030502
(
2007
).
73.
P. K.
Dixon
,
L.
Wu
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
, “
Scaling in the relaxation of supercooled liquids
,”
Phys. Rev. Lett.
65
,
1108
1111
(
1990
).
74.
N.
Menon
and
S. R.
Nagel
, “
Evidence for a divergent susceptibility at the glass transition
,”
Phys. Rev. Lett.
74
,
1230
1233
(
1995
).
75.
R. L.
Leheny
and
S. R.
Nagel
, “
High-frequency asymptotic shape of the primary relaxation in supercooled liquids
,”
Europhys. Lett.
39
,
447
452
(
1997
).
76.
U.
Schneider
,
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Excess wing in the dielectric loss of glass formers: A Johari-Goldstein β relaxation?
,”
Phys. Rev. Lett.
84
,
5560
5563
(
2000
).
77.
T.
Blochowicz
,
C.
Tschirwitz
,
S.
Benkhof
, and
E. A.
Rössler
, “
Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns
,”
J. Chem. Phys.
118
,
7544
(
2003
).
78.
T.
Blochowicz
,
C.
Gainaru
,
P.
Medick
,
C.
Tschirwitz
, and
E. A.
Rössler
, “
The dynamic susceptibility in glass forming molecular liquids: The search for universal relaxation patterns II
,”
J. Chem. Phys.
124
,
134503
(
2006
).
79.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
A411
(
1964
).
80.
A.
van Veluwen
and
H. N. W.
Lekkerkerker
, “
Non-Gaussian behavior of the displacement statistics of interacting colloidal particles
,”
Phys. Rev. A
38
,
3758
3763
(
1988
).
81.
W. K.
Kegel
and
A.
van Blaaderen
, “
Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions
,”
Science
287
,
290
293
(
2000
).
82.
E. R.
Weeks
,
J. C.
Crocker
,
A. C.
Levitt
,
A.
Schofield
, and
D. A.
Weitz
, “
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
,”
Science
287
,
627
631
(
2000
).
83.
P.
Chaudhuri
,
L.
Berthier
, and
W.
Kob
, “
Universal nature of particle displacements close to glass and jamming transitions
,”
Phys. Rev. Lett.
99
,
060604
(
2007
).
84.
C.
Scalliet
,
B.
Guiselin
, and
L.
Berthier
, “
Excess wings and asymmetric relaxation spectra in a facilitated trap model
,”
J. Chem. Phys.
155
,
064505
(
2021
).
85.
C.
Donati
,
S.
Franz
,
S. C.
Glotzer
, and
G.
Parisi
, “
Theory of non-linear susceptibility and correlation length in glasses and liquids
,”
J. Non-Cryst. Solids
307–310
,
215
224
(
2002
).
86.
N.
Lačević
,
F. W.
Starr
,
T. B.
Schrøder
, and
S. C.
Glotzer
, “
Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function
,”
J. Chem. Phys.
119
,
7372
7387
(
2003
).
87.
C.
Toninelli
,
M.
Wyart
,
L.
Berthier
,
G.
Biroli
, and
J. P.
Bouchaud
, “
Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios
,”
Phys. Rev. E
71
,
041505
(
2005
).
88.
G.
Brambilla
,
D.
El Masri
,
M.
Pierno
,
L.
Berthier
,
L.
Cipelletti
,
G.
Petekidis
, and
A. B.
Schofield
, “
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition
,”
Phys. Rev. Lett.
102
,
085703
(
2009
).
89.
C.
Dalle-Ferrier
,
C.
Thibierge
,
C.
Alba-Simionesco
,
L.
Berthier
,
G.
Biroli
,
J. P.
Bouchaud
,
F.
Ladieu
,
D.
L’Hôte
, and
G.
Tarjus
, “
Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence
,”
Phys. Rev. E
76
,
041510
(
2007
).
90.
J. P.
Garrahan
, “
Glassiness through the emergence of effective dynamical constraints in interacting systems
,”
J. Phys.: Condens. Matter
14
,
1571
1579
(
2002
).
91.
C.
Renner
,
H.
Löwen
, and
J. L.
Barrat
, “
Orientational glass transition in a rotator model
,”
Phys. Rev. E
52
,
5091
5099
(
1995
).
92.
P.
Charbonneau
,
C.
Das
, and
D.
Frenkel
, “
Dynamical heterogeneity in a glass-forming ideal gas
,”
Phys. Rev. E
78
,
011505
(
2008
).
93.
S. S.
Schoenholz
,
E. D.
Cubuk
,
E.
Kaxiras
, and
A. J.
Liu
, “
Relationship between local structure and relaxation in out-of-equilibrium glassy systems
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
263
267
(
2017
).
94.
V.
Bapst
,
T.
Keck
,
A.
Grabska-Barwińska
,
C.
Donner
,
E. D.
Cubuk
,
S. S.
Schoenholz
,
A.
Obika
,
A. W. R.
Nelson
,
T.
Back
,
D.
Hassabis
, and
P.
Kohli
, “
Unveiling the predictive power of static structure in glassy systems
,”
Nat. Phys.
16
,
448
454
(
2020
).
95.
D.
Richard
,
M.
Ozawa
,
S.
Patinet
,
E.
Stanifer
,
B.
Shang
,
S. A.
Ridout
,
B.
Xu
,
G.
Zhang
,
P. K.
Morse
,
J.-L.
Barrat
,
L.
Berthier
,
M. L.
Falk
,
P.
Guan
,
A. J.
Liu
,
K.
Martens
,
S.
Sastry
,
D.
Vandembroucq
,
E.
Lerner
, and
M. L.
Manning
, “
Predicting plasticity in disordered solids from structural indicators
,”
Phys. Rev. Mater.
4
,
113609
(
2020
).
You do not currently have access to this content.