We investigate the application of the imaginary time hierarchical equations of motion method to calculate real time quantum correlation functions. By starting from the path integral expression for the correlated system–bath equilibrium state, we first derive a new set of equations that decouple the imaginary time propagation and the calculation of auxiliary density operators. The new equations, thus, greatly simplify the calculation of the equilibrium correlated initial state that is subsequently used in the real time propagation to obtain the quantum correlation functions. It is also shown that a periodic decomposition of the bath imaginary time correlation function is no longer necessary in the new equations such that different decomposition schemes can be explored. The applicability of the new method is demonstrated in several numerical examples, including the spin-Boson model, the Holstein model, and the double-well model for proton transfer reaction.

2.
S.
Paeckel
,
T.
Köhler
,
A.
Swoboda
,
S. R.
Manmana
,
U.
Schollwöck
, and
C.
Hubig
,
Ann. Phys.
411
,
167998
(
2019
).
3.
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
4.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II—Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
Berlin
,
1983
).
5.
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
1998
).
6.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford
,
New York
,
1995
).
7.
J.
Ren
,
Z.
Shuai
, and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
14
,
5027
(
2018
).
8.
W.
Li
,
J.
Ren
, and
Z.
Shuai
,
J. Phys. Chem. Lett.
11
,
4930
(
2020
).
9.
L.
Chen
,
R.
Borrelli
,
D. V.
Shalashilin
,
Y.
Zhao
, and
M. F.
Gelin
,
J. Chem. Theory Comput.
17
,
4359
(
2021
).
10.
J. R.
Cendagorta
,
Z.
Bačić
, and
M. E.
Tuckerman
,
J. Chem. Phys.
148
,
102340
(
2018
).
11.
Z.
Tong
,
P. E.
Videla
,
K. A.
Jung
,
V. S.
Batista
, and
X.
Sun
,
J. Chem. Phys.
153
,
034117
(
2020
).
12.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
13.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
14.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1498
(
2021
).
15.
Y.
Jing
,
L.
Chen
,
S.
Bai
, and
Q.
Shi
,
J. Chem. Phys.
138
,
045101
(
2013
).
16.
L.
Song
and
Q.
Shi
,
J. Chem. Phys.
142
,
174103
(
2015
).
17.
J.
Zhang
,
R.
Borrelli
, and
Y.
Tanimura
,
J. Chem. Phys.
152
,
214114
(
2020
).
18.
Z.
Li
,
N.
Tong
,
X.
Zheng
,
D.
Hou
,
J.
Wei
,
J.
Hu
, and
Y.
Yan
,
Phys. Rev. Lett.
109
,
266403
(
2012
).
19.
H.-D.
Zhang
,
L.
Cui
,
H.
Gong
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
152
,
064107
(
2020
).
20.
H.-D.
Zhang
,
Q.
Qiao
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
147
,
044105
(
2017
).
21.
Y.
Tanimura
,
J. Chem. Phys.
141
,
044114
(
2014
).
22.
Y.
Tanimura
,
J. Chem. Phys.
142
,
144110
(
2015
).
23.
J.
Zhang
and
Y.
Tanimura
,
J. Chem. Phys.
156
,
174112
(
2022
).
24.
L.
Song
and
Q.
Shi
,
J. Chem. Phys.
143
,
194106
(
2015
).
25.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
26.
U.
Weiss
,
Quantum Dissipative Systems
, 3rd ed. (
World Scientific
,
London
,
2008
).
27.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
28.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
29.
E.
Sim
and
N.
Makri
,
Comput. Phys. Commun.
99
,
335
(
1997
).
30.
J.
Cao
,
L. W.
Ungar
, and
G. A.
Voth
,
J. Chem. Phys.
104
,
4189
(
1996
).
31.
J. M.
Moix
,
J.
Ma
, and
J.
Cao
,
J. Chem. Phys.
142
,
094108
(
2015
).
32.
H.-D.
Zhang
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
142
,
024112
(
2015
).
33.
Z.-H.
Chen
,
Y.
Wang
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
154
,
244105
(
2021
).
34.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
35.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
36.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
37.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
,
J. Chem. Phys.
148
,
174102
(
2018
).
38.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
39.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
,
J. Chem. Phys.
150
,
184109
(
2019
).
40.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
,
J. Chem. Phys.
153
,
214109
(
2020
).
41.
T.
Li
,
Y.
Yan
, and
Q.
Shi
,
J. Chem. Phys.
156
,
064107
(
2022
).
42.
R. C.
Aiken
,
Stiff Computation
(
Oxford University Press, New York
,
1985
).
43.
J. D.
Lambert
 et al.,
Numerical Methods for Ordinary Differential Systems
(
Wiley
,
New York
,
1991
), Vol. 146.
44.
D.
Xu
and
J.
Cao
,
Front. Phys.
11
,
110308
(
2016
).
45.
Y.
Xie
,
J.
Zheng
, and
Z.
Lan
,
J. Chem. Phys.
149
,
174105
(
2018
).
48.
E. A.
Silinsh
and
V.
Capek
,
Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena
(
AIP Press
,
New York
,
1994
).
49.
Y.
Tanimura
and
P. G.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
50.
I. R.
Craig
,
M.
Thoss
, and
H.
Wang
,
J. Chem. Phys.
127
,
144503
(
2007
).
51.
L.
Chen
and
Q.
Shi
,
J. Chem. Phys.
130
,
134505
(
2009
).
52.
Q.
Shi
,
L.
Zhu
, and
L.
Chen
,
J. Chem. Phys.
135
,
044505
(
2011
).
53.
W.
Xie
,
Y.
Xu
,
L.
Zhu
, and
Q.
Shi
,
J. Chem. Phys.
140
,
174105
(
2014
).
54.
Y.
Liu
,
Y.
Yan
,
T.
Xing
, and
Q.
Shi
,
J. Phys. Chem. B
125
,
5959
(
2021
).
55.
W. H.
Miller
,
J. Chem. Phys.
61
,
1823
(
1974
).
56.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
57.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
).
58.
H.
Wang
,
D. E.
Skinner
, and
M.
Thoss
,
J. Chem. Phys.
125
,
174502
(
2006
).
You do not currently have access to this content.