We present a formulation and implementation of the density functional theory (DFT)+U method within the framework of linear combination of numerical atomic orbitals (NAO). Our implementation not only enables single-point total energy and electronic-structure calculations but also provides access to atomic forces and cell stresses, hence allowing for full structure relaxations of periodic systems. Furthermore, our implementation allows one to deal with non-collinear spin texture, with the spin–orbit coupling (SOC) effect treated self-consistently. The key aspect behind our implementation is a suitable definition of the correlated subspace when multiple atomic orbitals with the same angular momentum are used, and this is addressed via the “Mulliken charge projector” constructed in terms of the first (most localized) atomic orbital within the d/f angular momentum channel. The important Hubbard U and Hund J parameters can be estimated from a screened Coulomb potential of the Yukawa type, with the screening parameter either chosen semi-empirically or determined from the Thomas–Fermi screening model. Benchmark calculations are performed for four late transition metal monoxide bulk systems, i.e., MnO, FeO, CoO, and NiO, and for the 5d-electron compounds IrO2. For the former type of systems, we check the performance of our DFT+U implementation for calculating bandgaps, magnetic moments, electronic band structures, as well as forces and stresses; for the latter, the efficacy of our DFT+U+SOC implementation is assessed. Systematic comparisons with available experimental results, especially with the results from other implementation schemes, are carried out, which demonstrate the validity of our NAO-based DFT+U formalism and implementation.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
W.
Kohn
, “
Nobel Lecture: Electronic structure of matter—Wave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
1266
(
1999
).
4.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
5.
C.
Li
,
X.
Zheng
,
N. Q.
Su
, and
W.
Yang
, “
Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations
,”
Natl. Sci. Rev.
5
,
203
215
(
2018
).
6.
N. Q.
Su
,
C.
Li
, and
W.
Yang
, “
Describing strong correlation with fractional-spin correction in density functional theory
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
9678
9683
(
2018
).
7.
N. Q.
Su
,
A.
Mahler
, and
W.
Yang
, “
Preserving symmetry and degeneracy in the localized orbital scaling correction approach
,”
J. Phys. Chem. Lett.
11
,
1528
1535
(
2020
).
8.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
9.
V.
Anisimov
and
Y.
Izyumov
,
Electronic Structure of Strongly Correlated Materials
, Springer Series in Solid-State Sciences Vol. 163 (
Springer
,
Berlin, Heidelberg
,
2010
).
10.
B.
Himmetoglu
,
A.
Floris
,
S.
de Gironcoli
, and
M.
Cococcioni
, “
Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems
,”
Int. J. Quantum Chem.
114
,
14
49
(
2014
); arXiv:1309.3355.
11.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
12.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
13.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
14.
W.
Metzner
and
D.
Vollhardt
, “
Correlated lattice fermions in d = ∞ dimensions
,”
Phys. Rev. Lett.
62
,
324
327
(
1989
).
15.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
, “
Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
,”
Rev. Mod. Phys.
68
,
13
125
(
1996
).
16.
V. I.
Anisimov
,
A. I.
Poteryaev
,
M. A.
Korotin
,
A. O.
Anokhin
, and
G.
Kotliar
, “
First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method
,”
J. Phys.: Condens. Matter
9
,
7359
7368
(
1997
).
17.
A. I.
Lichtenstein
and
M. I.
Katsnelson
, “
Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach
,”
Phys. Rev. B
57
,
6884
6895
(
1998
).
18.
G.
Kotliar
,
S. Y.
Savrasov
,
K.
Haule
,
V. S.
Oudovenko
,
O.
Parcollet
, and
C. A.
Marianetti
, “
Electronic structure calculations with dynamical mean-field theory
,”
Rev. Mod. Phys.
78
,
865
951
(
2006
).
19.
K.
Held
, “
Electronic structure calculations using dynamical mean field theory
,”
Adv. Phys.
56
,
829
926
(
2007
).
20.
J.
Hubbard
, “
Electron correlations in narrow energy bands
,”
Proc. R. Soc. London, Ser. A
276
,
238
(
1963
).
21.
M. C.
Gutzwiller
, “
Effect of correlation on the ferromagnetism of transition metals
,”
Phys. Rev. Lett.
10
,
159
(
1963
).
22.
J.
Kanamori
, “
Electron correlation and ferromagnetism of transition metals
,”
Prog. Theor. Phys.
30
,
275
(
1963
).
23.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
,
943
954
(
1991
).
24.
V. I.
Anisimov
,
I. V.
Solovyev
,
M. A.
Korotin
,
M. T.
Czyżyk
, and
G. A.
Sawatzky
, “
Density-functional theory and NiO photoemission spectra
,”
Phys. Rev. B
48
,
16929
16934
(
1993
).
25.
A. B.
Shick
,
A. I.
Liechtenstein
, and
W. E.
Pickett
, “
Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis
,”
Phys. Rev. B
60
,
10763
10769
(
1999
).
26.
See https://elk.sourceforge.io/ for information about the Elk software.
27.
O.
Bengone
,
M.
Alouani
,
P.
Blöchl
, and
J.
Hugel
, “
Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO
,”
Phys. Rev. B
62
,
16392
16401
(
2000
).
28.
B.
Amadon
,
F.
Jollet
, and
M.
Torrent
, “
γ and β cerium: LDA+U calculations of ground-state parameters
,”
Phys. Rev. B
77
,
155104
(
2008
).
29.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
 et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
30.
M.
Cococcioni
and
S.
de Gironcoli
, “
Linear response approach to the calculation of the effective interaction parameters in the LDA+U method
,”
Phys. Rev. B
71
,
035105
(
2005
).
31.
B.
Delley
, “
From molecules to solids with the DMol3 approach
,”
J. Chem. Phys.
113
,
7756
7764
(
2000
).
32.
K.
Koepernik
and
H.
Eschrig
, “
Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme
,”
Phys. Rev. B
59
,
1743
1757
(
1999
).
33.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
2779
(
2002
).
34.
T.
Ozaki
,
H.
Kino
,
J.
Yu
,
M.
Han
,
N.
Kobayashi
,
M.
Ohfuti
,
F.
Ishii
, and
T.
Ohwaki
, User’s manual of OpenMX, http://www.openmx-square.org,
2008
.
35.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
(
2009
).
36.
P.
Li
,
X.
Liu
,
M.
Chen
,
P.
Lin
,
X.
Ren
,
L.
Lin
,
C.
Yang
, and
L.
He
, “
Large-scale ab initio simulations based on systematically improvable atomic basis
,”
Comput. Mater. Sci.
112
,
503
517
(
2016
).
37.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
, “
Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions
,”
New J. Phys.
14
,
053020
(
2012
).
38.
S. V.
Levchenko
,
X.
Ren
,
J.
Wieferink
,
R.
Johanni
,
P.
Rinke
,
V.
Blum
, and
M.
Scheffler
, “
Hybrid functionals for large periodic systems in an all-electron, numeric atom-centered basis framework
,”
Comput. Phys. Commun.
192
,
60
(
2015
).
39.
P.
Lin
,
X.
Ren
, and
L.
He
, “
Accuracy of localized resolution of the identity in periodic hybrid functional calculations with numerical atomic orbitals
,”
J. Phys. Chem. Lett.
11
,
3082
(
2020
).
40.
P.
Lin
,
X.
Ren
, and
L.
He
, “
Efficient hybrid density functional calculations for large periodic systems using numerical atomic orbitals
,”
J. Chem. Theory Comput.
17
,
222
(
2021
).
41.
M. N.
Tahir
and
X.
Ren
, “
Comparing particle-particle and particle-hole channels of the random phase approximation
,”
Phys. Rev. B
99
,
195149
(
2019
).
42.
X.
Ren
,
F.
Merz
,
H.
Jiang
,
Y.
Yao
,
M.
Rampp
,
H.
Lederer
,
V.
Blum
, and
M.
Scheffler
, “
All-electron periodic G0W0 implementation with numerical atomic orbital basis functions: Algorithm and benchmarks
,”
Phys. Rev. Mater.
5
,
013807
(
2021
).
43.
See https://siesta-project.org/siesta/ for information about the SIESTA software.
44.
M. J.
Han
,
T.
Ozaki
, and
J.
Yu
, “
ON LDA+U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis
,”
Phys. Rev. B
73
,
045110
(
2006
).
45.
M.
Kick
,
K.
Reuter
, and
H.
Oberhofer
, “
Intricacies of DFT+U, not only in a numeric atom centered orbital framework
,”
J. Chem. Theory Comput.
15
,
1705
(
2019
).
46.
R. M.
Martin
,
Electronic Structure
(
Cambridge University Press
,
2004
).
47.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
, “
Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
,”
Phys. Rev. B
52
,
R5467
R5470
(
1995
).
48.
P. H.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
, “
Ground states of constrained systems: Application to cerium impurities
,”
Phys. Rev. Lett.
53
,
2512
2515
(
1984
).
49.
M. R.
Norman
and
A. J.
Freeman
, “
Model supercell local-density calculations of the 3d excitation spectra in NiO
,”
Phys. Rev. B
33
,
8896
8898
(
1986
).
50.
O.
Gunnarsson
,
O. K.
Andersen
,
O.
Jepsen
, and
J.
Zaanen
, “
Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe
,”
Phys. Rev. B
39
,
1708
1722
(
1989
).
51.
F.
Aryasetiawan
,
M.
Imada
,
A.
Georges
,
G.
Kotliar
,
S.
Biermann
, and
A. I.
Lichtenstein
, “
Frequency-dependent local interactions and low-energy effective models from electronic structure calculations
,”
Phys. Rev. B
70
,
195104
(
2004
).
52.
T.
Miyake
and
F.
Aryasetiawan
, “
Screened Coulomb interaction in the maximally localized Wannier basis
,”
Phys. Rev. B
77
,
085122
(
2008
).
53.
T.
Miyake
,
F.
Aryasetiawan
, and
M.
Imada
, “
Ab initio procedure for constructing effective models of correlated materials with entangled band structure
,”
Phys. Rev. B
80
,
155134
(
2009
).
54.
R.
Sakuma
and
F.
Aryasetiawan
, “
First-principles calculations of dynamical screened interactions for the transition metal oxides MO (M=Mn, Fe, Co, Ni)
,”
Phys. Rev. B
87
,
165118
(
2013
).
55.
E. R.
Ylvisaker
,
W. E.
Pickett
, and
K.
Koepernik
, “
Anisotropy and magnetism in the LSDA+U method
,”
Phys. Rev. B
79
,
035103
(
2009
).
56.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
57.
F.
Bultmark
,
F.
Cricchio
,
O.
Grånäs
, and
L.
Nordström
, “
Multipole decomposition of LDA+U energy and its application to actinide compounds
,”
Phys. Rev. B
80
,
035121
(
2009
).
58.
M. R.
Norman
, “
Calculation of effective Coulomb interaction for Pr3+, U4+, and UPt3
,”
Phys. Rev. B
52
,
1421
1424
(
1995
).
59.
Y. C.
Wang
and
H.
Jiang
, “
Local screened Coulomb correction approach to strongly correlated d-electron systems
,”
J. Chem. Phys.
150
,
154116
(
2019
).
60.
D. R.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
61.
M.
Schlipf
and
F.
Gygi
, “
Optimization algorithm for the generation of ONCV pseudopotentials
,”
Comput. Phys. Commun.
196
,
36
44
(
2015
).
62.
P.
Scherpelz
,
M.
Govoni
,
I.
Hamada
, and
G.
Galli
, “
Implementation and validation of fully relativistic GW calculations: Spin–orbit coupling in molecules, nanocrystals, and solids
,”
J. Chem. Theory Comput.
12
,
3523
3544
(
2016
).
63.
M.
Chen
,
G.-C.
Guo
, and
L.
He
, “
Systematically improvable optimized atomic basis sets for ab initio calculations
,”
J. Phys.: Condens. Matter
22
,
445501
(
2010
).
64.
W.
Setyawan
and
S.
Curtarolo
, “
High-throughput electronic band structure calculations: Challenges and tools
,”
Comput. Mater. Sci.
49
,
299
312
(
2010
).
65.
S. K.
Panda
,
S.
Bhowal
,
A.
Delin
,
O.
Eriksson
, and
I.
Dasgupta
, “
Effect of spin orbit coupling and Hubbard U on the electronic structure of IrO2
,”
Phys. Rev. B
89
,
155102
(
2014
).
66.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
67.
T.
Ozaki
, “
Variationally optimized atomic orbitals for large-scale electronic structures
,”
Phys. Rev. B
67
,
155108
(
2003
).
68.
T.
Ozaki
and
H.
Kino
, “
Numerical atomic basis orbitals from H to Kr
,”
Phys. Rev. B
69
,
195113
(
2004
).
69.
F.
Tran
,
P.
Blaha
,
K.
Schwarz
, and
P.
Novák
, “
Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides
,”
Phys. Rev. B
74
,
155108
(
2006
).
70.
Y.-C.
Wang
,
Z.-H.
Chen
, and
H.
Jiang
, “
The local projection in the density functional theory plus U approach: A critical assessment
,”
J. Chem. Phys.
144
,
144106
(
2016
).
71.
L.
Messick
,
W. C.
Walker
, and
R.
Glosser
, “
Direct and temperature-modulated reflectance spectra of MnO, CoO, and NiO
,”
Phys. Rev. B
6
,
3941
3949
(
1972
).
72.
H. K.
Bowen
,
D.
Adler
, and
B. H.
Auker
, “
Electrical and optical properties of FeO
,”
J. Solid State Chem.
12
,
355
359
(
1975
).
73.
R. J.
Powell
and
W. E.
Spicer
, “
Optical properties of NiO and CoO
,”
Phys. Rev. B
2
,
2182
2193
(
1970
).
74.
G. A.
Sawatzky
and
J. W.
Allen
, “
Magnitude and origin of the band gap in NiO
,”
Phys. Rev. Lett.
53
,
2339
2342
(
1984
).
75.
S.
Hüfner
,
J.
Osterwalder
,
T.
Riesterer
, and
F.
Hulliger
, “
Photoemission and inverse photoemission spectroscopy of NiO
,”
Solid State Commun.
52
,
793
796
(
1984
).
76.
A. K.
Cheetham
and
D. A. O.
Hope
, “
Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1−xO
,”
Phys. Rev. B
27
,
6964
6967
(
1983
).
77.
B. E. F.
Fender
,
A. J.
Jacobson
, and
F. A.
Wedgwood
, “
Covalency parameters in MnO, α-MnS, and NiO
,”
J. Chem. Phys.
48
,
990
994
(
1968
).
78.
W. L.
Roth
, “
Magnetic structures of MnO, FeO, CoO, and NiO
,”
Phys. Rev.
110
,
1333
1341
(
1958
).
79.
D. C.
Khan
and
R. A.
Erickson
, “
Magnetic form factor of Co++ ion in cobaltous oxide
,”
Phys. Rev. B
1
,
2243
2249
(
1970
).
80.
H.
Jiang
,
R. I.
Gomez-Abal
,
P.
Rinke
, and
M.
Scheffler
, “
First-principles modeling of localized d states with the GW@LDA+U approach
,”
Phys. Rev. B
82
,
045108
(
2010
).
81.
G.
Pepy
, “
Spin waves in MnO; from 4°K to temperatures close to TN
,”
J. Phys. Chem. Solids
35
,
433
444
(
1974
).
82.
R.
Shanker
and
R. A.
Singh
, “
Analysis of the exchange parameters and magnetic properties of NiO
,”
Phys. Rev. B
7
,
5000
5005
(
1973
).
83.
X.
Feng
and
N. M.
Harrison
, “
Magnetic coupling constants from a hybrid density functional with 35% Hartree-Fock exchange
,”
Phys. Rev. B
70
,
092402
(
2004
).
84.
See http://abacus.ustc.edu.cn for the ABACUS software.
You do not currently have access to this content.